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PREFACE

The work described in this report was supported as a part of
the internal research program of the Cornell Aeronautical Laboratory, Inc,
The concepts discussed had their origins in some independent research by
the author in the field of physiological psychology, in which the aim has
been to formulate a brain analogue useful in analysis, This area of
research has been of active interest to the author for five or six years.
The perceptron concept is a recent product of this research program;
the current effort is aimed at establishing the technical and economic

feasibility of the perceptron.



I. INTRODUCTION

Since the advent of electronic computers and modern servo
systems, an increasing amount of attention has been focused on the
feasibility of constructing a device possessing such human-like functions
as perception, recognition, concept formation, and the ability to genera-
lize from experience. In particular, interest has centered on the idea
of a machine which would be capable of conceptualizing inputs impinging

directly from the physical enviromnment of light, sound, temperature, etc.

-- the "phenomenal world" with which we are all familiar -- rather than
requiring the intervention of a human agent to digest and code the

necessary information.

A primary requirement of such a system is that it must
be able to recognize complex patterns of information which are phenomen=
ally similar, or are experientally related -- a process which corresponds
to the psychological phenomena of "association" and "stimulus generalization',
The system must recognize the "same" object in different orientations, sizes,
colors, or transformations, and against a variety of different backgrounds,
The recognition of "similar" forms can be carried out, to a certain extent,
by analytic procedures on a digital or analog computer, but it is hard to
conceive of a general analytic program which would, for example, recognize
the form of a man seen from any angle, and in any posture or position,
without actually storing a large library of reference figures against
which the percept could be compared. In general, identities of this
sort must be learned, or acquired from experience, and if the system is

to be economical, the number of functional units in the storage system,

or memory, should be much less than the number of forms or memories to

be retained, It is this last requirement which seems to be incompatible
with the nature of conventional computer systems., Moreover, if a memory
with hundreds of thousands or millions of patterns stored in it must be

scanned sequentially in order to identify an object, the time required
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by conventional systems becomes excessive, The proposed system must
not only economize on storage space: it must be able to categorize
or identify an object "directly" —- i.e., it must locate the relevant

memories without resorting to a sequential search procedure,

Recent theoretical studies by this writer indicate that
it should be feasible to construct an electronic or electromechanical
system which will learn to recognize similarities or identities
between patterns of optical, electrical, or tonal information, in a
manner which may be closely analogous to the perceptual processes of
a biological brain, The proposed system depends on probabilistic
rather than deterministic principles for its operation, and gains its
reliability from the properties of statistical measurements obtained
from large populations of elements, A system which operates according
to these principles will be called a perceptron, A model which is
designed to accept optical, or "visual" patterns as inputs will be
called a photoperceptron. One which accepts tonal patterns, or

"auditory" inputs, will be designated a phonoperceptron, and we might

also consider the possibility of electro=~ or radioperceptrons, with
corresponding sensory devices, It is also useful to distinguish

between momentary stimulus perceptrons and temporal pattern perceptrons

- the latter having the ability to remember temporal sequencesof events,
rather than transient momentary images, such as would be obtained from

a collection of isolated frames cut from a strip of movie film.

The present discussion will concentrate on a momentary
stimulus photoperceptron, which seems to be the most elementary device

which could be built to demonstrate the general principles of this
type of systemo, It is suggested that the proposed model should be
built, not only to demonstrate the workability of the perceptron
concept, but as a research tool for further study of the principles
employed,



II. GENERAL DESCRIPTION OF A PHOTOPERCEPTRON

We might consider the perceptron as a black box, with
a TV camera for input, and an alphabetic printer or a set of signal
lights as output. Its performance can then be described as a process
of learning to give the same output signal (or print the same word)
for all optical stimuli which belong to some arbitrarily constituted
class, Such a class might be the set of all two~dimensional trans-
positions of a triangle over the field of view of the TV camera, or
the set of rotational positions of a 3-dimensional form, The forms of
a stimulus pattern which are to be identified as equivalent can each
be represented as a unique set of illuminated points in the TV raster,
All of the "equivalent" forms constitute a transposition set, which we
will call T,

It is possible to teach the system to discriminate two
such generalized forms, or "percepts", by presenting for each form a
random sample from the set of its possible transformations, while
simultaneously "forcing" the system to respond with Output 1 for Form 1,
and Output 2 for Form 2, For example, we might require the perceptron
to learn the concepts "square'" and "circle", and to turn on Signal
Light 1 for "square", and Signal Light 2 for "circle", We would then
proceed to show the system a large set of squares of different sizes,
in different locations, while holding Light No. 1 on, thus "forcing"
the response, We would then show a similar set of circles, while
holding Light No. 2 on, If we then show the perceptron any square or
any circle, we would expect it to turn on the appropriate light, with
a high probability of being correct. The penalty that we pay for the
use of statistical principles in the design of the system is a probabi-
lity that we may get a wrong response in any particular case -- i.e.,

a wrong response that is inherent in the nature of the system, rather
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than due to a malfunction of one of its components. It appears that
this probability may be reduced, however, to a quantity no greater
than the typical probabilities of an error due to malfunctions in

electronic equipment,

The system has three main components, as indicated in

Fig, 1:

(1) The S-System (Sensory System) can be represented as a
set of points in a TV raster, or as a set of photocells, Each raster-
point in the S-system is comnscted to a number of units in the A-system
(Association System), to which impulses are transmitted when the S-point
is "on" (illuminated), Any particular S-A connection may be either
positive (carrying positive or "excitatory" signals to the A-unit) or
negative (tending to inhibit or suppress activity of the A-unit)., A
given point in the S-raster, for example, might be positively connected

to ten A-units, and negatively connected to another ten units,

(2) The A-System (Association System) performs the switching
functions between input and output, Each A-unit receives impulses from
a number of S-points, and transmits outputs to one or more Response
Units (R-Units). The A-Units are characterized by the fixed parameter o,
the threshold value which corresponds to the algebraic sum of input
pulses necessary to evoke an output, and the stochastic variable v, the
"output value", which may be any physically measurable characteristic of
the output pulse, such as amplitude, frequency, or delay-period, The
value of an A-unit's output will vary with its history, and acts as a

counter, or register for the memory-function of the system,

(3) The R-System (Response System) consists typically of a
relatively small number of units, which may operate type-bars or signal
lights, and which are activated when the mean or net value of the signals

received from the A-System exceeds a critical level 6,0 In addition to
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printing or displaying an output signal, each response unit feeds back
impulses which inhibit, or cut off the activity of all mutually exclusive

R-units and the A-units which might activate them, These inhibitory feed=-
back connections guarantee that only one response out of a mutually
exclusive set can be triggered at one time. The response circuits are
designed in such a manner that if impulses arrive at two R-units simul-
taneously, the unit whose inputs have the greatest mean (or net) value
will respond first, cutting off the other through its inhibitory connections
before it can be trigcered. An entire set of mutually exclusive R-units
thus acts like a multi-stable flip-flop, in which only one stage can be
on" at any one time, Several such mutually exclusive R-units may exist
in parallel, as, for instance, the ten alphabets necessary to provide

for printing a ten letter word., In such a case, the system is organized

as in Fig, 2, with a distinct A-set corresponding to each R-set.

In Fig. 3, a more detailed breakdown is shown illustrating
the logical composition of a perceptron designed to produce a three-
binary-digit number as an output, Each binary place in the number is
represented by an R-set of two members, zero and one, In Figure 3,
circles have been used to represent sets of functional units, and
rectangles to represent single units, The figure illustrates the effect‘
of inhibitory connections when the response "101" is "on", All shaded
areas of the diagram would be under inhibition while this response was
active, Note that the intersection of an active A-set with an inhibited
A-set is not inhibited, i.e., inhibitory comnections go from each R-unit

only to those A-subsets which do not contribute connections to it,

The entire organizatidn of a system of this sort can be
represented by a single table, or matrix of connections between units,
The system of Fig, 3, for example, might be represented by a table such
as that of Fig. le
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Fige L: CONNECTION MATRIX FOR A PERCEPTRON WITH THREE BINARY

RESPONSE SETS

Parameters: 3 positive and 3 negative inputs to each A-unit

i A=units in each Response Set

Notation: 1 = positive comnection, S to A, or A to R

-1 = negative connection, S to A
X = absolute inhibitory connection, R to A
0 = no connection
SePoi
oint AI Set AII Set AIII Set
123456 123456 123456
1 101000 ~11-1101 001l-110
2 «=11-1010 010-11-1 111101
3 1-1-1 1 00 111010 «11-l 0 O=1
b 000-111 -10010-1 0 O-1 0=1 0
5 «11010-1 0-10101 110101
6 1-1-1 001 1-1-1-11-1 =1-101 1-1
7 «100-101 11000 1 0 0-1-1 0
8 0-1 1101 001-101 -1-110 0-1
9 001000 10-10-10 0l1o0-110
10 010-11-1 0011-10 0010-11
ReUnit:
R
I(0) 1111xx 000000 00000O0
R
I(1) xx1111 000000 ©00O0O0O0O
R
I1(0) 000000 1111xx 000000
R
I1(1) 000000 xx1111 000000
R
II11(0) 000000 000000 11x111x
R
ITI(1) 000000 000000 %x1111lx1
_8..
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Some general principles of organization should be clear
from this table,

(1) The table is organized into three independent sections,
one for every independent set of responses, Each of these sections

consists of an S-A matrix and an A-R matrix.

(2) Within the matrix of S-A connections for each response
set, it is desirable that each column should have a unique permutation

of positive and negative connections,

(3) The numbers of positive and negative connections are the

same in every colum of the matrix,

(L) Each A-set connects to only one R-set,

(5) Each row of an A-R sub-matrix should have a unique

permutation of connections.

(6) A1l elements of an A-R sub-matrix which do not represent
excitatory comnections are filled in with inhibitory connections from

R to A, provided the A's and R's are of the same set,

Electronic schematics are shown in Fig. 5 for a typical
A-unit and an R-unit which would meet the logical requirements of the
model, The value of the A-unit is controlled by an integrator, which
gains a slight increment every time the unit is active, and which governs
the gain of the output pulse-generator, In such a system, the amplitude
of the output pulse is equivalent to the value, The gas tube in the
input line triggers the A-unit when the value of 8 is exceeded, provided

the gate is not closed by signals from the R-units,
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The input network to the R-units may be designed either
to sum or to average the inputs received, The design shown merely sums
the inputs, but an averaging system would be preferable, particularly
if the number of simultaneous inputs expected is small, A voltage is
built up across the capacitor of the input integrator at a rate propor-
tional to the net (or mean) input value. A comparator measures the
difference between this voltage and a fixed reference (GR), and triggers

the response unit when the threshold voltage is exceeded,
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IIT, PRINCIPLES OF STIMULUS DISCRIMINATION

In the previous section, we have described the physical
characteristics of the perceptron, without attempting to justify the
prescribed organization., In this section, we will outline the basic
principles on which such a device operates, and introduce some criteria
for evaluating its performance. We will not attempt to derive equations
in this presentation, but the basic equations will be found in Appendix
I. The essence of the perceptron's logic is a stochastic process in the
A-set, whereby the subset of units connecting any particular stimulus
pattern to any particular response gains an increment in its aggregate
value every time that that particular stimulus and response occur
simultaneously. The Association System can be thought of as a number
of overlapping populations of pointswhose mean values are measured by
the Reunits., Each R-unit measures the mean value of active points in
that particular subset, or class, of points which is connected to it,

If the sets of A-units which transmit impulses to the responses are
large enough, we can be reasonably sure that there will be a non-zero
subset of points transmitting impulses to any particular response for
every stimulus pattern which might be presented.

In a system such as we have described, there will tend
to be a different set of A-units activated by every distinct stimulus
pattern which might occur, If we did not include some proportion of
negative (inhibitory) impulses from the S-points, then a large, complex
pattern would always activate any of the A-units which might be activated
by its component sub-patterns, or by any illuminated area encompassed
within the larger pattern, Under such conditions, the ability to make
independent associations to parts and wholes of complex patterns, or to
discriminate different sizes of illuminated areas would be lost. The
inclusion of inhibitory impulses from the S-points, however, guarantees
that the set of A-units responding to a "paft" will generally contain
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some members which will be inhibited when the "whole" is presented, The
sets of A-units activated by two different stimuli, selected at random,
will nonetheless tend to overlap; i.e.; they will contain some proportion

of common elements, P.,

It is convenient to use the notation As.r to denote the
subset of A-units which is activated by Stimulus 8 and which transmits
impulses to Response Unit r, Thus Al.h means the set of A-units which
is activated by Stimulus Pattern 1, and which transmits impulses to
Response L, Similarly, A1,3.h,8,12 means the set of A-units which are
each activated by Stimulus Patterns 1 and 3, and each of which transmits
to the Response Units L, 8 and 12, This will be a subset of Al.h’ and
will also be a subset of A3.h’ A3.8’ etcee Thus, if we consider a system
with only two responses, and limit ourselves to two unrelated stimulus
patterns, chosen at random, each of which activates 50% of all A-units,

we would expect to find non-zero subsets in the following proportions:

Al.l 25% of all A-units
A2.1 25% of all A-units
A,20 12.5%

A2 25%

&, , 25%

b 2.2 12,5%

Al.l, 5 12,5%

by, 12.5%

A1,2.1,2 6+25% of all A-Units

In this system, the subsets Al 2.1 and Al 2.2 represents the units which
3ceo L Ak



are common to both stimuli, Pc’ the proportion of those elements
responding to one stimulus which also respond to the second, is
therefore equal to 0.5.

If the stimulus S1 is presented, the subsets Al.l and
A1.2 (including Al,2.1’ A1,2.2’ A1.1,2) will be activated and impulses
will be transmitted to both Responses 1 and 2, Since the entire
system is constituted to yield a "flip-flop" effect, however, one or
the other response will prevail, and will suppress the association
sets which do not contribute to its own excitation. Thus, if the
A1.2 set happens to have a greater mean (or net) value than the set
A 1° Response No, 2 will become dominant, and Response No., 1 will be

1 .
suppressed, This will lead almost immediately to a condition in which

only the subsct A (including A1,2.2’ A1.1,2’ and A1,2.1,2) remains
active, all others being suppressed, For as long as this condition

continues, the elements of this subset will accumulate an increment to

their value, while the elements of the suppressed subsets will remain

unchanged, Thus, the next time the same stimulus (Sl) is presented,
that subset of association units (Al 2) which is excited by this

stimulus and tends to evoke R2 will probably have a mean value greater
than that of the association system as a whole, due to its selective

"reinforcement" on the previous presentation. The same response, R2,
will, therefore, have a greater probability of occurring again, The
system has thus learned to associate the stimulus Sl to R2,
will tend to fix that connection more firmly on each successive trial,

and it

If a different stimulus, SZ’ is then presented, it will
tend to pick up some of the same A-units as S1 -= specifically, those

units in the common set, Al 5.1° and A Hence, part of the value
s [ ]

1,2.2°
increase which was gained by the set A1 2 will carry over to the set

A2 09 creating a slight bias towards Response No. 2, Thus, the overlap,
or communality, between the two sets, leads to a statistical interaction

between the associations formed, which may occasionally cause errors in
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performance, If the sets responding to different stimuli each represent
a small fraction of the total number of A-units, then the interaction
will be small, and the probability of interference between different
associations will be slight, since the random biases introduced will
tend to cancel one another and can easily be overcome by the value-gain
which is concentrated in the correct subset, Appendix IT contains an
illustrative example of the process by which associations are formed,

in a system with 6l A-units,

At this point, we should note that while the communality
between subsets has cost us a penalty of interference between associations,
it has gained something far more important, For if we were to design a
system of, say, 100 A-units, in which sets of 10 units respond to every
stimulus, and if we were to insist that there be no communality between
sets, then we would be limited to a total of only ten stimuli which the
system might distinguish, If, on the other hand, we admit an expected
communality of 10%, the limiting number of stimuli which the system
might identify becomes equal to the number of combinations of 100 things
taken ten at a time -= a total of 1.73 x 1012 possible combinations,

This number, however, should not be taken to indicate the practical
capacity of the system, because long before this number of associations
has been learned, the system will have beenMsaturated", in the sense that
the expected loss of previously acquired associations (through interaction
effects) will exactly balance the expected gain of new associations. As
this equilibrium condition is approached, it will become harder and hard-
er to "teach" the system new associations without knocking out old ones,
and if we try to re-establish the old ones, we will find that we have

lost others in the process,

A more useful criterion for the capacity of the system
is the probability that a stimulus which has been associated to one of

two responses will retain its proper "preference" after the system has




been saturated to a given level -- i.,e,, after some number of associations
has been learned by the system. This probability is formally equivalent
to the probability of establishing a correct discrimination between any
two A-sets on the basis of their mean values, and will be called Pd' The
results of some calculations of Pa are presented in Table 1, This table
shows the probability of a correct preference for one of two responses,

in a system which has learned NS associations to each response, The table
has been computed by equation 5, in Appendix I and is subject to the
conditions indicated there, NA is the number of A-units connected to

each R-unit. The entries in the table represent the normal curve ordinates
of the probability, Pd, rather than the probabilities themselves., Thus
with 1000 A-units connected to each R-unit, and a system in which 1% of
the A-units respond to stimuli of a given size (ieeo, Pa = .01), the prob-
ability of making a correct discrimination with one wnit of training, after
10" stimuli have been associated to each response in the system, is equal
to the 2,23 sigma level, or a probability of 0,987 of being correct. In
the table, the communality between A-sets for different responses has been
taken to be zero, i.e,, each A-unit transmits to one and only one response
unit, To correct for varying degrees of communality (Pcr) between the
sets comected to different responses, the figures presented should be
multiplied by 1'Pcr’ and Ns should be divided by the expected number of
output connections per A-unit., The advantage of overlapping the R-sets
(in the manner indicated in Fig, 3) is similar ‘o the advantage of over-
lapping the A-sets for different stimuli; it permits a vast increase in
the number of alternative responses which can be handled, at the cost of

a relatively unimportant degradation in the probability of a correct
response,

From Table 1, the potential efficiency of a system of this
sort can readily be seen., By overlapping the A-sets for different
responses (i,e,, permitting Pcr to be greater than zero) a great number

of mutually exclusive responses can be included in any one set, and by
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including several independent sets, words can be built up, or percepts
can be analyzed according to several independent attributes simulta=-
neously, A crude estimate indicates that a system with two to three
thousand A-units should be capable of maintaining a vocabulary comparable

to the English language, if connection parameters were properly optimized,

In order to maximize system capacity, and to reduce the
learning process for new objects, it would be desirable to reduce the
set of transformations, T, of a particular stimulus pattern by center-
ing the pattern in the field of view of the input camera, By including
an independent R-set with feedback to a set of camera-aiming servos,
the system can readily be made to train the camera on any forms occur-
ing in peripheral locations in the field, without actually discriminating
the particular forms. For this purpose, it would be necessary only to
learn to distinguish the presence or absence of stimuli in different
locations in the field, associating the presence of a pattern in the
lower left, for example, with a control response moving the camera in
this direction, The system would then be able to "fixate" any pattern
which might prove significant, in much the same mammer as the human eye,
limiting its "recognition learning" to a relatively limited central

field, analogous to the fovea in human vision,
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TABLE T

DISCRIMINATION PROBABILITY (P d) AS A FUNCTION OF N_,, N, AND Pa

S° “A

(Probabilities Expressed in Normal Curve Ordinates)

Pa = o10 Pa = 01
Ny N, =100 N, = 200 N, = 1000 N, = 2000
100 7.5 10.5 223.7 316
1,000 2,36 3.33 7047 100
10,000 o7L5 1,05 22,37 31.6
100,000 0236 333 7407 10,0
1,000,000 +07L5 105 2,237 3.16
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APPENDIX I

BASIC PERCEPTRON EQUATIONS

1, Proportion of Association Units Responding to a Stimulus (Pa):

For a finite number of S-points,

R = 2.0, Plei) (1)

where ma.x (r‘-g -3,,69) <
max (0O, r-x-2 ) £

e < min(r,x)
i < min(e-6,r-e)

P(e,i) = zCe 4 C; ?ch

PoNod MR OB

e

n cf"

total number of S-points in system
number of S-points activated by the stimulus
number of +l's in a column of the SyA connection matrix
number of =l's in a column of the connection matrix
number of zeros in a column of the connection matrix
r-e~i = number of zeros in a column of a matrix of r
rows, obtained by striking out n-r rows from
the SyA matrix, where e = number of +1's and
i = number of =~l's,
threshold of an A-unit

When the number of S-points is large, the solution of this

equation converges rapidly to the equation for an infinite number of

S=points:

Xy
DD W -ROT ()



oy e x-e { -1
where  Ro(e.i) =, C, R®(1-R) c, R (1-r)?

¢

R = r/n = proportion of S-points activated by the stimulus

2. Communality Proportion (Pc):

For a finite number of S-points:
e - '/Pa i Z P(Z)'."fe,‘zirge‘v?;) (3)
{e,l,"eJ‘l", qe, gif
where {e, i, 1., 14, g5 gi] is the set of all combinations of e, i. 1,
li’ Bg> and g4 which conform to the following set of conditions:
e-i-dg+di+g,.--9: 26

ma,x(r-} —;,9)5 e < min(r,x)

mo.x (r-x —7,,0)5 i S min (e-G,g,r-e)
max L-i-h,0) =4 < min(L,e)
max (8-8g-h,0) £ 0; < min (L-4¢, 1)
max (g -y -1-2+h,6) =< g < min(g,x-e)
ma.x(o,g.-z+e-?+h, ?-9,‘4-&1-3,)&?,-5(9-?,,%-;)
Plesisdesdisges ;) =

2Ce 4Ci 3Chn ¢Csy 1Cy4; nCy, z-¢Cg4 4-i1C3; 4-hCg,

nCr rC n-r Cg,
£ = total number of points activated by the first stimulus

(Sl) which are not activated by S,.
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g = total number of new points activated by the second

stimulus which were not activated by the first.

£ = number of +1's from the originally active set of

connections which drop out with the new stimulus.

ti = number of -1's which drop out.

&h = number of zero-connections which drop out.

8e = number of +1's gained in the new connections.
g = number of -1's gained.

For an infinite number of S-points:

P = I/Pa_‘i }i i

e:8 (*e-0 Lgso0 J

where Poo <e’;:‘ee )-2[ 9 9,2 s ?i)= 2

4, -4
ec-tzLe(”L)z ¢

G (1-Gg)* ¢ e

e o
non
<
=
il

2r

in the second stimulus

(]
L}

= number of zero-connections gained.

ZZT i/ Ra(esis 4

O %0 gi=0

34i2302 %)

(e-i-ty+li+g,-g:20

C6 /?“(l—e)"'e

(t L)

1

c; R (1-rR) ¥

2 -€ ?2

' % 7. ‘f';‘ hy
y-iCg. G¥ (1-G) s

proportion of S-points in the first stimulus

proportion of S-points in the set R which are not

g/n-r = proportion of the residual S-raster (left over

from the first stimulus) which is included in the

second stimulus.

~2]-
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3. Probability of Correct Discrimination (Pd):

Pd = the area under the normal curve from —oco to +Z, where
the ordinate, Z, is given by the exvression:
= I-R
= o
d

where Pc is the communality between the two A-sets to be discriminated,

and,
2Ns sp3 L4
7 V£ (2 -r)
Pa = expected proportion of A-units responding to random
stimuli (assuming a fixed or mean size for all S-sets)
(Equations 1 and 2)
Nd = number of A-units in the subset activated by a particular
stimilus and transmitting to a particular response
NS = number of stimuli associated to each of the responses
under comparison (assuming an equal degree of saturation
for both responses)
This equation makes the assumption that all stimuli learned
are of the same size -- i,e.,, that Pa remains constant, It also assumes

that an equal number of stimuli have been associated to each response,
with a fixed amount of reinforcement for each association formed. An
equation which relaxes these restrictions has not been developed, but
Monte Carlo studies are being planned to investigate the importance of
the assumptions, An additional assumption, for which corrections can

readily be made, is that Nd will be considerably greater than 1.
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Optimization of x, y, and 8

Given a mutually consistent set of constraints, Ns’ M, Smax’ and

Pa|Rcrit’ the optimum system (in which Pc is minimized for any stimulus)

is given by the simultaneous solutions of the following three equations,

subject to the limits indicated, If a set of constraints does not permit

a solution within these limits, this indicates that the constraints are

mutually inconsistent, and consequently inadmissible as design criteria.

The constraints

P
a

N
s

M

crit

o) +6 ~-Z
Y = M- x
9 '-"F(xa (#, Ns [ Pa,’ RCI"H') (an)

are defined as follows:
number of S-points in the raster.

maximum number of input connections allowed to each A-unit,
The system performance will be improved by setting M as
high as possible, (M = X+Y =< NS).

maximum stimulus size (number of S-points) to which the
t be able t N - M)

system must be able to respond (NS M< Smax <L Ns M)

The system!s performance will be improved by setting

S as low as possible,
max

= the required proportion of A~units activated by a "criterion

stimulus” of size R .,, P should be set to the lowest
erit a

value consistent with the requirement that any stimulus should



reliably excite at least a few units in every
R=set,

Note that the value established for @ represents the minimum stimulus

size to which the system will be capable of responding.

In practice, the optimum design of a system subject to
a given set of constraints can be found by finding the value of 8,
with the corresponding X and Y from the above equations, for which

the function

F(x"#’NS’e’chit)'P@|Rcr|+| ®=R)

is at a minimum, The function F is the value of Pa obtained by
equation 1, For a system yielding a Pa exactly equal to the constraine
ing value, the minimum of this expression should be exactly equal to
ZEero,.
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APPENDIX II

AN TLLUSTRATION OF THE DISCRIMINATION METHOD

Fig. 6 shows a system with 6L A-units, indicating the
particular units (chosen at random) which respond to each of six
stimulus patterns, The 32 units in the left half of each block are
connected to Rl’ and the 32 units in the right half of each block are
connected to R2. R1 and R2
with zero overlap between their corresponding association sets, When
R1 is active, the R2 5 is active, the R1
set is suppressed, Let us consider an experiment in which Sl, 82, and
S, are all to be associated to Rl’ while Sh’ SS, and S¢ are all to be

3

associated to R2. Thus the active units shown in the left half of the

Sl diagram will each gain one unit of "walue" due to the Sl-R1 associa-

represent mutually exclusive responses,

set is suppressed, and when R

tion, and, similarly, the active units in the left halves of the 82 and

83 diagrams will gain a unit of value for each association in which
they participate. The active units shown on the right side of the
diagrams will gain in value for the Sh’ 85’ and 86 associations, After
all six associations have been formed, the value distribution will be

as shown in Fig. Ta. If we then superimpose the S. configuration (shown

1
by underlining in Fig. 7a) we can add up the net value for the R1 set

and for the R2 set, that would be evoked by such a presentation., We

find a bias of 18 to 6, in favor of Rl’ which means that the R1 response

would occur, suppressing R If we add up the bias in the same manner

2.
for each of the other "stimulus patterns'", we find that the biases are

as follows:
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Expected
R1 R

2 Response
5, 18 6 R
S, 17 13 Ry
53 21 1L R
S), 12 1 R,
55 9 15 R,
Sy 10 18 R,

Thus, we see that each of the associations which we tried to form has
actually been established, in spite of the fact that the R2 associations
have added to the value of the R2 subset for all stimulus patterns, and
the R1 associations have similarly added an increment to the R1 subsets
of all stimuli, The expected communality proportion, in this model, is
equal to 5/16, which, together with the small number of A-units, would
cause us to expect rather poor performance from the system, It is
interesting to note that, even under these conditions, all six associa=-

tions have been retained correctly,

To make sure that we have not accidentally selected a
biased set of patterns, which lend themselves to the particular
associations we have considered, let us try reversing each one of the
3 to R2,
the other three stimuli to Rl’ by the same procedure that we used
before, In this case, the resulting value distribution is given by

associations, i.e., we will now associate Sl’ 82, and S and
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Fige Tb, and the R1/R2 biases are as follows:

T
51, 10 15 R,
S, 11 19 R,
S, 10 18 R,
S, 1 10 Ry
Sg 1L 13 Ry
S¢ 1k 10 Ry

Note that every response has reversed itself correctly, even though

the ratio in the case of SS is very close.

It has been confirmed by a limited model-sampling study
of transformations of stimuli in a LOxhO raster, with specified connections
to a set of A-units, that anA-unit typically shows a bias to respond to
one type of stimulus pattern more than others, For example, a particular
A-unit might respond to 20% of all possible transpositions of a square,
and perhaps to 1%, or even 0% of the set of transformations of a circle.
A bias of this sort is shown clearly in our model, where the A-unit in
the fifth row and second column is seen to respond to each of the first
three stimuli, and to none of the last three, One way of accounting for
the discrimination phenomenon is to point out that a stimulus from the
transformation set, Tl,-is more likely to excite A-units which are
biased towards the set Tl than units which are biased towards some other

set, T2. But the units with a Tl bias will have a corresponding value-
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bias towards the appropriate response, since they have been "re=-
inforced" predominantly by stimuli from the Tl set, and relatively
little by conflicting stimuli., Thus, the presentation of a stimulus
to a "saturated" system can be seen as a biased sampling of A-units
which have a stronger linkage to the appropriate response than to

any of the inappropriate ones.

Fige 6: A-units in a system of 6li, which respond to each of six
stimulus patterns (X denotes a responding unit, O 2

non-responding unit)

Slz S2: 83:
RISet stet R1$et RZSet RISet R2Sét
0X00 0X00 X0X0 X0X0 X000 X0X0
0000 0xxo 00X0 0)40) ¢ 00x0 (6/0]0) 6
X0oxX 0X00 0Xx00 0000 XX00 0XX0
00X0 00x0 000X 00X 00X0 0000
0X00 0)(0) ¢ (0):0.00] 0000 0X00 00X0
000X X0xo0 X000 10):(0) ¢ X00X 0X00
X0X0 X000 0000 X000 X0X0 X00X
0X00 0000 0XX0 00X0 0000 00X0
Sh: SS: 86:
RISet RZSet Rlset RQSet RISet R2Set
0):(0) ¢ X000 00xX0 X0X0 X00X 00x0
000X 0X00 000X 0/0)04 00X0 XX0X
0X0X 00X0 0000 000X X0x0 00xX
00X0 000X 10):(0) 4 0000 0xox 0X00
00X0 0000 00xXX 0xxX0 000X 00X0
0000 10).00) 4 0000 00X0 10):(0):4 0X00
00X0 X0oxX Xoxx X000 0000 0000
0X00 0X00 0000 000X

-28-~



Figo T: VALUES RESULTING FROM ASSOCTATION EXPERIMENTS

(a) Sq5 S, and S3 to Ry (b) 815 8,5 and S3 to R,
SLI.’ SS, and Sé to R2 Sh’ Ss, and 86 to Rl
RISet stet Rlset R28et
2110 2020 1112 2120
0020 1212 0012 0212
2211 0022 1111 0210
0021 0101 0112 0021
0310 0120 0022 0111
2002 0211 1102 1211
2020 1101 1011 3001
0210 1102 0110 0020
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I, SUMMARY
T e T AT I

(PROJECT PARA)

Establishment of a new research program at Cornell Aeronauntical
Laboratory, Inc, is proposed, with the objective of designing, fabricating,
and evaluating an electronic brain model, the photoperceptron. The proposed

pilot model will be capable of "learning®" responses to ordinary visual

patterns, or forms. The system will employ a new theory of memory storage,
(the theory of statistical separabi}igx), which permits the recognition of
complex petterns with an efficlency far greater than that attainable by
existing computers., Devices of this sort are expected ultimately to be
capable of concept formation, language translatlon, collation of military
intelligence, and the solution of problems through inductive logic,

The development and construction of a pilot model is expected
to require the wark of three professional people, a digital computer, and
an associated technical staff for eighteen months,

II, INTRODUCTION

With this proposal, a description of an electronic automaton,
the Cornell Photoperceptron, is submitted, This is the outcome of a
program of theoretical studles on the feasibility of an advanced brain
model, which is to be capable of pattern perception and generalization,
The authar®s work on the "theory of statistical separability”, upon which
the perceptron is based, was begun at Cornell University about five years
ago, and has been continued under the sponsorship of the Systems Research
Depertment of Cornell Aeronautical Laboratory, Inc,



