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Abstract

A recent publication by Grant et al. [2] has revealed some innovations with respect to the checking
and generation of prime numbers with which to crack cryptographic keys. We argue that their method is
minimal, and go on to prove some general cases of the mathematics they present - specifically refuting two
of their claims. We also present more computationally efficient methods, and use these as a spring board
to refute the existence of any practical efficiency improvements coming from this methodology.

1 Introduction
“Chebyshev said it,
And I’ll say it again,
There’s always a prime
Between n and 2n...”

— Mathematician’s Nursery Rhyme

The primes are fundamental building blocks of
mathematics and cryptography, and have been in
active study since Eratosthenes. Their quiddity is
renowned, and yet we have many useful, intriguing,
and solid results spanning the two thousand years
that have lead to modern mathematics.

Grant in [2] states that they have made significant
advances in checking primes for the cracking of cryp-
tographic keys. In this paper we argue that there are
more general results in the background mathematics
that guarantees this work. We prove the general case
of the modulus method given by [2], and offer poten-
tially better methods to efficiently generate primes
based off some deficiencies in the previous work as
presented by Grant et al.

In section 3, we present some proofs of well-known

results for interest and convenience. In section 4 we
present a construction that is designed to elucidate
that the methods from [2] are minimal, when consid-
ered in the case of moduli that are powers of two.

We then go on to show that these methods do not
scale to larger moduli for highly composite numbers,
as the sets in question are bounded below by the
unbounded asymptotic value for π(n), given by the
Prime Number Theorem, in section 5.

Although we will use more formal presentation and
language, we consider that the content of this pa-
per is fairly elementary. The required mathematical
background is broadly covered by most pre-university
courses that we know of.

2 Previous Work

In [2] we find methods around the “digital roots" of
prime numbers, in an attempt to optimize the prime
search when it comes to breaking cryptographic keys.
Their method revolves (literally) about the icosite-
tragon, allowing us to map the primes onto the cor-
ners of this 24-sided regular polygon. It is well stud-
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ied in online forums the fact that if for prime p,

x ≡ p mod 24

then x must be one of

{1, 5, 7, 11, 13, 17, 19, 23}

as is documented on MathExchange at [4].
However, we find no mention whatsoever of other

work in related studies on the primes and a given
modulus, including [3] which explicitly studies primes
based off congruence mod 24. It is the author’s
opinion, however, that these are not immediately rel-
evant in light of the work we present in this paper.

We also disagree with the claim in [2] that the
icositetragon is a “unique polygon pertaining to
prime numbers and their ultimate incidence and dis-
tribution" and provide a proof.

However, in lieu of immediately available resources
that generalise the ideas and properties cited in [2],
we present some straightforward proofs and results
that lead naturally into a prime generation method
we could not find in the literature so far.

2.1 Omitted Points of Discussion
We will omit the discussion of various rather trivial
arithmetical errors.

For example, [2, p.5] concerns the following ‘digital
root’ function D(n), defined as the recursive sum of
the digits of n in base 10 until one digit remains. So,

D(589) = 5 + 8 + 9 = 22→ D(22) = 2 + 2 = 4

so D(589) = 4 when all is done. They claim the
following distributive laws hold, for all a, b ∈ Q with
a+ b = c and a× b = d:

• D(a+ b) = D(a) +D(b) = D(c)

• D(a× b) = D(a)×D(b) = D(d)

Whilst D(a + b) = D(c) and D(a × b) = D(d) are
both fine, we can see that the distributive nature of
the laws are false:

Let a = 7, b = 4 then D(a) = 7, D(b) = 4

D(a+ b) = D(c) = D(11) = 2 ̸= 7 + 4

D(a× b) = D(d) = D(28) = 1 ̸= 7× 4

(via D(28) = 10→ D(10) = 1)

As such, clearly these distributive laws are at best
badly written down, and at worst simply wrong.
Whilst such an error belies a lack of care in their pre-
sentation, the distributive non-laws are not utilized
in the original paper.

We also note that there is no formal definition of
a ‘quasi-prime’ number that is in line with the liter-
ature. We take the definition from [1]:

Definition 2.1. A quasi-prime n is an integer with-
out small prime factors, where the prime factors of
n must be greater than some P(n), a function that
grows more slowly than n.

Such a function can be given by:

P(n) = n1/(ln lnn)2

as given in [1]. Again, we do not linger on such an
error as it is not integral to the arguments presented
in this paper.

3 Modular Arithmetic and
Primes

We will discuss some interesting but fairly elemen-
tary points regarding the interaction of primes with
modular arithmetic.

Definition 3.1. For a, b ∈ N, let the following nota-
tions be given:

• Let (∃∞x) denote “there exist infinitely many x
such that..."

• gcd(a, b) denote the greatest common divisor be-
tween a and b.

We shall use that a and b are co-prime iff
gcd(a, b) = 1, with

(∀x ∈ N)(∀ prime p)gcd(x, p) = 1 or p

We state Dirichlet’s Theorem, first proved in 1837,
as found in [5]:

Theorem 3.2 (Dirichlet, 1837). For any a, b ∈ N
such that

gcd(a, b) = 1
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there exist infinitely many n ∈ N, such that the arith-
metic progression given by

(an+ b)

is prime.

3.1 A General Theorem about Primes
and Moduli

This stalwart result gives us an easy theorem regard-
ing modular arithmetic and primes:

Theorem 3.3. Let

Am = {a : 1 < a < m & gcd(a,m) = 1}

and let tm > 1 be the first number such that
gcd(tm,m) = 1. For any m ∈ N, and each prime
p ≥ t

(∃a ∈ Am) p ≡ a mod m

Proof. Fix m ∈ N, and let Am be given. By basic
number theory, we require that for any prime p ≥ tm

p ≡ x mod m→ gcd(x,m) = 1

. To see this, suppose for contradiction that there
exists n > 1 such that gcd(x,m) = n, with

p ≡ x mod m

for some prime p. Then, there exists a such that
am + x = p, and given n is a factor of each part of
the left-hand side of the sum, there exists b such that
bn = p, so p is not prime. →←1

Next, we notice that

(∀a ∈ Am)(∃∞ prime p ≥ t) a ≡ p mod m

follows directly from theorem 3.2. Thus, for any a <
m such that gcd(a,m) = 1, the progression given for
all n ∈ N by nm+ a is prime infinitely often.

Thus, it suffices to finally show that the primes are
only found along such a given a modulus m, which are
all contained in Am. This fact follows by the pigeon-
hole principle, as all of the primes p ≥ tm mod m

1We apologize if this proof is being rather explicit and basic,
but we wish to present a full argument in this paper.

must appear for each of the a ∈ Am, given each a
‘finds’ infinitely many primes p. The theorem follows
from these arguments, as we have that it is neces-
sary that for any prime p, (p mod m) is contained
in Am.

Note that for prime m the result is immediate and
trivial, as for every n < m, if m is prime, then
gcd(n,m) = 1. Our minimum threshold tm is given
as any prime below tm will be a factor of m.

4 New Methods and Limits in
Prime Generation

We next utilize theorem 3.3 to improve efficiency
in a similar way found in [2] - we will make use of
some facts about modular arithmetic with modulus
2m, and then show how this method, as does each
method, have ceilings of efficiency.

4.1 2m Moduli as Binary Filters on Bi-
nary Strings

Binary representations of natural numbers are the
bedrock on which all modern computations acts. We
propose some nice equivalences between binary mod-
uli and actions on binary strings with a view to ap-
plying such ‘binary filters’ to generate binary stems
which are infinitely prime. The author does not pro-
pose to be the first to have noticed the below results,
however these are presented in an as accessible way
as possible.

For any number n, let n2 be the base 2 binary rep-
resentation of n. The initial segment of n2, is some
finite number of the least significant bits correspond-
ing to the lowest powers of 2 making up n2, which
are the initial bits of n2 going from the right.

The following holds:

Lemma 4.1. For all m ∈ N, let n > m, then

n mod 2m

is equivalent to the bitwise AND-mask

n2 AND 1111111 . . . 1︸ ︷︷ ︸
m-many
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which we denote by n2 ↾ m.

Proof. This holds for for m = 1, as this AND mask
is equivalent to asking whether some number is odd
or even, which is 0 or 1 mod 2.

Next, notice that for every successive m, 2m enu-
merates successive powers of two, which are the suc-
cessively added binary bits to any representation n2

- as such, n2 mod 2m+1 is the same as asking if the
next power of two is in the sum of powers of two giv-
ing n, which is the same as asking if the (m+1)th bit
is 0 or 1 in n2.

Next we notice that the given AND mask is just
the ‘cut’ of some n2 to the first m bits left of the
LSB, and our argument follows inductively from the
above.

Thus, we have a ‘binary filter’ for the stems of the
base-2 representations of natural numbers. We can
now construct sets of these stems by lemma 4.1, as
follows. Let

Bm = {b2 : 1 < b < m & gcd(b, 2m) = 1}

Theorem 4.2. Bm is the set of initial segments of
the binary representations of all primes p ≥ t, (p
mod 2m).

Proof. Follows immediately from theorem 3.3 and
lemma 4.1 - noting that t is given by theorem 3.3.

Let a⌢2 b2 denote the concatenation of the binary
representations of a and b. The following corollary is
given by theorem 4.2 and theorem 3.2:

Corollary 4.3. for all n ∈ N and for all b ∈ Bm for
some m,

n⌢
2 b

is prime infinitely often.

4.2 Proposed Improvements for
Prime Generation Methods are
Minimal

Take the case above, with m = 8. We can thus
take the 54 primes less than 256 as given, and gen-
erate candidates going forward by means of permut-
ing 1, 2, 3, . . . in binary, concatenated with candidates

from B8. We then check if some candidate c has some
integer n for which c2 = 24n+1, and if yes, pass this
into the full primality check. The proof that for every
prime p, p2 is of the form 24n+ 1 for some n can be
found in the appendix.

This method cuts out the least 28 possibilities of
search for each bit added to the MSB of some ini-
tial segment in B8. This scales for each subsequent
(m+ 1) for each candidate generated from an initial
segment in Bm, as for each bit added, we restrict
the least significant m-many bits to the contents of
Bm+1. Thus, for arbitrarily large m, Bm will give
2m−1 stems in Bm.

Thus, this method is simply the following: “skip
the even numbers" - given we have moduli that
have prime factors of only two. We have literally just
found a fancier, more roundabout way of stating this.

5 Discussion of Results and
Limits of These Methods

We will discuss some general properties and limits of
these kinds of approaches.

5.1 Discussion of Our Methods

Our approaches outlined above may, to some, seem
counter-intuitive - particularly theorem 4.2. How-
ever, we have similar results for base-10 representa-
tions - no prime will end in 2, 4, 6, or 8 else it will be
divisible by 2, and no prime will end in 0 or 5 else be
divisible by 5, so all base-10 primes must end 1, 3, 7,
or 9.

However, just as we found that the Bm will be
bounded below by 2m−1, which is not optimal, we
can give similar lower bounds in general, as we shall
see in Proposition 5.2.

We have not yet carried out any further formal
analysis of any actual speed-up of this generation
method when it comes to breaking cryptographic key
material. We expect it to be minimal, as it currently
is for [2], but more than a cursory analysis is beyond
the scope of this paper.
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5.2 Grant’s Fallacy
Suppose we see each of the a ∈ Am as ‘search oppor-
tunities’ for finding primes in order to proceed and at-
tack some cryptosystem. Grant’s paper demonstrates
how to take the 24 opportunities (mod 24) and reduce
them down to 8 opportunities, which is a significant
reduction in the search space, by two thirds.

We wish to note that these are still CPU expen-
sive arithmetical operations - checking if something
is prime or not is a computationally expensive thing
to do.2 However, less expensive options do not add
any particular efficiency.

With our stated results we can instead consider
the use of other highly composite numbers - numbers
that are more divisible than their predecessors - to
generate primes, and that are greater than 24. For
a modulus of 60, a larger highly composite number,
we would get 16 search opportunities for all primes
p ≥ 7. Whilst this is more than the 8 in Grant,
this is a reduction overall of the search space by just
over 73.33%. For a larger highly composite num-
ber 1260, there are 288 numbers n < 1260 such that
gcd(n, 1260) = 1, which is ∼ 22.86% of the numbers.
We may fool ourselves into thinking that this trend
will be very useful for prime number generation, but
this is not the case.

During the preparation of this paper, we have,
however, noted some rather interesting behaviours
of the numbers with GCD of 1 below some highly
composite number. This is cause for further mathe-
matical investigation.

Despite the fact that the ration of the number of co-
prime numbers below any n will approach zero, this
will not happen regularly enough to be practical. A
such, we set out to disprove the effectiveness of this
approach by means of the prime number theorem,
generally stated as follows:

Theorem 5.1. Let π(n) be the usual prime count-
ing function such that π(n) is just the count of the
number of primes below n.

lim
x→∞

π(x)[
x

ln x

] = 1

2Assuming P ̸= NP , this is a very expensive operation.

The usual asymptotic reinterpretation of this is
π(x) ∼ x

ln x and is a well explored result in number
theory.

So, taking the use of other highly composite num-
bers into account, we can demonstrate the following
growth limit:
Proposition 5.2. For all m, |Am| is Ω( m

lnm ).
Where Ω here is the asymptotic lower bound for

the size of Am, the lower bound analogue of the
Bachmann-Landau Big-O notation.

Proof. The size of Am is bounded below by the fact
that we enumerate all n < m that are coprime to m.
Note for prime m, |Am| = m − 1, so our best cases
are highly composite numbers to be the lowest values
for the size of Am.

For any m it the case that Am contains the all
primes p below m and all composite x < m with
x coprime to m by definition. We know that the
π(m) ∼ m

lnm from the above, so even assuming there
are no composite x < m coprime to m, our lower
limit must be (m/ lnm).

An interesting aside is that, because |Am| = m− 1
for prime m, then |Am| is O(m), giving a Big-Θ value
of Θ(m−(m/ lnm)). Additionally, it may be possible
to use the Erdős-Kac theorem (see [6]) to get a better
lower bound based on the probabilistic distribution of
the primes.

Thus, our computation is bounded below by the
distribution of actual prime numbers, and so is
bounded below by an unbounded function. As such
there is little effective difference between these opti-
mizations and simply pre-computing all primes below
a certain bit-length, as whilst there may be some m
which gives significant reductions in the upper search
space above m knowing information about coprime
numbers below m, the efficiency does not scale up-
wards as m grows, owing to the lower bound given
above.

APPENDIX - A Direct Proof for
a Proposition in [2]
A proof of the following proposition is offered in [2]:
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Proposition 5.3. For any prime p ≥ 5 there exists
an n such that

p2 − 1 = 24n

Their proof is not convincing as a direct proof,
given that a fact they make use of, that ‘every prime
is of the form 6k ± 1 for some k’, is never proven. In
fact, it is usually a corollary of this result, which we
now prove.

Proof. For any given prime p ≥ 5, consider the triple

(p− 1), p, (p+ 1)

and note the following facts. Given each prime p > 2
is odd, 2 is a factor for both (p− 1) and (p+ 1), and
given these are 2 apart, 4 is a factor for one of them
as well. Likewise for any triple such as this, one of
them must also be a multiple of 3, and it cannot be
p, so it must be one of (p− 1) or (p+ 1).

Thus, we can conclude there exists some n such
that

(p− 1)× (p+ 1) = 2× 3× 4× n = 24n

as we identified factors 2, 3, and 4 above. The the-
orem follows from the multiplying out of both equa-
tions like so

(p− 1)× (p+ 1) = p2 − 1 = 24n
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