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Abstract: 

We estimate the rebound effect for motor vehicles, by which improved fuel efficiency causes 
additional travel, using a pooled cross section of US states for 1966-2001. Our model accounts 
for endogenous changes in fuel efficiency, distinguishes between autocorrelation and lagged 
effects, includes a measure of the stringency of fuel-economy standards, and allows the rebound 
effect to vary with income, urbanization, and the fuel cost of driving. At sample averages of 
variables, our simultaneous-equations estimates of the short- and long-run rebound effect are 
4.5% and 22.2%. But rising real income caused it to diminish substantially over the period, aided 
by falling fuel prices. With variables at 1997-2001 levels, our estimates are only 2.2% and 
10.7%, considerably smaller than values typically assumed for policy analysis. With income at 
the 1997 – 2001 level and fuel prices at the sample average, the estimates are 3.1% and 15.3%, 
respectively. 
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1. Introduction 

 It has long been realized that improving energy efficiency releases an economic reaction 

that partially offsets the original energy saving. As the energy efficiency of some process 

improves, the process becomes cheaper, thereby providing an incentive to increase its use.  Thus 

total energy consumption changes less than proportionally to changes in physical energy 

efficiency.  This “rebound effect” is typically quantified as the extent of the deviation from 

proportionality. It has been studied in many contexts, including residential space heating and 

cooling, appliances, and transportation (Greening, Greene, and Difiglio, 2000). 

For motor vehicles, the process under consideration is use of fuel in producing vehicle-

miles traveled (VMT). When vehicles are made more fuel-efficient, it costs less to drive a mile, 

so VMT increases if demand for it is downward-sloping. That in turn causes more fuel to be used 

than would be the case if VMT were constant; the difference is the rebound effect. Obtaining 

reliable measures of it is important because it helps determine the effectiveness of measures 

intended to reduce fuel consumption and because increased driving exacerbates congestion and 

air pollution. For example, the rebound effect was an issue in the evaluation of recently adopted 

greenhouse-gas regulations for California (CARB, 2004, Sect. 12.3-12.4). It has played a 

prominent role in analyses of the Corporate Average Fuel Economy (CAFE) regulations in the 

US and of proposals to strengthen them. 

This paper presents estimates of the rebound effect for passenger-vehicle use that are 

based on pooled cross-sectional time-series data at the U.S. State level.  It adds to a sizeable 

econometric literature, contributing four main improvements.  First, we use a longer time series 

(1966-2001) than was possible in earlier studies.  This increases the precision of our estimates, 

enabling us (among other things) to determine short- and long-run rebound effects and their 

dependence on income.  Second, the econometric specifications rest on an explicit model of 

simultaneous aggregate demand for VMT, vehicle stock, and fuel efficiency.  The model is 

estimated directly using two- and three-stage least squares (2SLS and 3SLS); thus we can treat 

consistently the fact that the rebound effect is defined starting with a given change in fuel 

efficiency, yet fuel efficiency itself is endogenous.  Third, we measure the stringency of CAFE 

regulation, which was in effect during part of our sample period, in a theoretically motivated 

way: as the gap between the standard and drivers’ desired aggregate fuel efficiency, the latter 

estimated using pre-CAFE data and a specification consistent with our behavioral model. Fourth, 
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we allow the rebound effect to depend on income and on the fuel cost of driving.  The 

dependence on income  is expected from theory (Greene, 1992), and is suggested by micro-based 

estimates across deciles of the income distribution (West, 2004).  Just like income changes, 

changes in fuel prices affect the share of fuel costs in the total cost of driving, and so we also 

expect them to influence the rebound effect. 

Our best estimates of the rebound effect for the US as a whole, over the period 1966-

2001, are 4.5% for the short run and 22.2% for the long run.  The 2SLS and 3SLS results are 

mostly similar to each other but differ from ordinary least squares (OLS) results, which are 

unsatisfactory as they strongly depend on details of the specification. While our short-run 

estimate is at the lower end of results found in the literature, the long-run estimate is similar to 

what is found in most earlier work.  Additional estimation results, like the long-run price-

elasticity of fuel demand (-0.43) and the proportion of it that is caused by mileage changes 

(52%), are similar to those in the literature. 

This agreement is qualified, however, by our finding that the magnitude of the rebound 

effect declines with income and, with less certainty, increases with the fuel cost of driving. These 

dependences substantially reduce the magnitude that applies to recent years . For example, using 

average values of income, urbanization and fuel costs measured over the most recent five-year 

period covered in our data set (1997-2001), our results imply short- and long-run rebound effects 

of just 2.2% and 10.7%, roughly half the average values over the longer time period. Similarly, 

the long-run price elasticity of fuel demand declines in magnitude in recent years and so does the 

proportion of it caused by changes in amount of motor-vehicle travel.  These changes are largely 

the result of real income growth and lower real fuel prices.  Future values of the rebound effect 

depend on how those factors evolve. 

The structure of the paper is as follows.  Section 2 introduces the definition of the 

rebound effect and reviews some key contributions toward measuring it. Section 3 presents our 

theoretical model and the econometric specification, and section 4 presents estimation results.  

Section 5 concludes. 

2.  Background 

The rebound effect for motor vehicles is typically defined in terms of an exogenous 

change in fuel efficiency, E. Fuel consumption F and motor-vehicle travel M – the latter 

measured here as VMT per year – are related through the identity F=M/E.  The rebound effect 
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arises because travel M depends (among other things) on the variable cost per mile of driving, a 

part of which is the per-mile fuel cost, PM≡PF/E, where PF is the price of fuel.  This dependence 

can be measured by the elasticity of M with respect to PM, which we denote εM,PM. When E is 

viewed as exogenous, it is easy to show that fuel usage responds to it according to the elasticity 

equation: , ,1F E M PMε ε= − − .  Thus a non-zero value of εM,PM means that F is not inversely 

proportional to E: it causes the absolute value of εF,E to be smaller than one. For this 

reason, -εM,PM itself is usually taken as a definition of the rebound effect.   

Two of our innovations relate directly to limitations of this standard definition of the 

rebound effect. First, the standard definition postulates an exogenous change in fuel efficiency E. 

Yet most empirical measurements of the rebound effect rely heavily on variations in the fuel 

price PF,1 in which case it is implausible that E is exogenous. This can be seen by noting the 

substantial differences in empirical estimates of the fuel-price elasticities of fuel consumption, 

εF,PF, and of travel, εM,PF.2 As shown by USDOE (1996: 5-11), they are related by εF,PF = 

PFEPFEPFM ,,, )1( εεε −−⋅ , where εE,PF measures the effect of fuel price on efficiency. Thus the 

observed difference between εF,PF and εM,PF requires that εE,PF be considerably different from 

zero. Ignoring this dependence of E on PF, as is done in many studies, may cause the rebound 

effect to be overestimated if unobserved factors that cause M to be large (e.g. an unusually long 

commute) also cause E to be large (e.g. the commuter chooses fuel-efficient vehicles to reduce 

the cost of that commute). 

A second limitation of the standard definition is that fuel cost is just one of several 

components of the total cost of using motor vehicles. Another important component is time cost, 

which is likely to increase as incomes grow. If consumers’ response to fuel costs is related to the 

proportion of total cost accounted for by fuel, then |εM,PM| should increase with fuel cost itself 

and diminish with income (Greene, 1992). Our specification allows for such dependences. 

Furthermore, time costs increase with traffic congestion; we account for this indirectly by 

allowing the rebound effect to depend on urbanization, although empirically this turns out to be 

                                                 
1 Most studies assume that that travel responds to fuel price PF and efficiency E with equal and opposite elasticities, 
as implied by the definition of the rebound effect based on the combined variable PM=PF/E.  See for example 
Schimek (1996), Table 2 and Greene et al. (1999), fn. 6. 
2 See USDOE (1996, pp. 5-14 and 5-83 to 5-87); Graham and Glaister (2002, p. 17); and the review in Parry and 
Small (2005). 
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unimportant. An extension, not attempted here, would be to allow congestion to be endogenous 

within the system that determines amount of travel.  

 Some empirical studies of the rebound effect have used aggregate time-series data. 

Greene (1992) uses annual U.S. data for 1957-1989 to estimate the rebound effect at 5 to 15% 

both in the short and long run, with a best estimate of 12.7%.  According to Greene, failing to 

account for autocorrelation – which he estimates at 0.74 – results in spurious measurements of 

lagged values and to the erroneous conclusion that long-run effects are larger than short-run 

effects.3  Greene also presents evidence that the fuel-cost-per-mile elasticity declines over time, 

consistent with the effect of income just discussed; but the evidence has only marginal statistical 

significance. 

 Jones (1993) re-examines Greene’s data, adding observations for 1990 and focusing on 

model-selection issues in time-series analysis.  He finds that although Greene’s autoregressive 

model is statistically valid, so are alternative specifications, notably those including lagged 

dependent variables. The latter produce long-run estimates of the rebound effect that 

substantially exceed the short-run estimates (roughly 31% vs. 11%).4 Schimek (1996) uses data 

from a still longer time period and finds an even smaller short-run but a similarly large long-run 

rebound effect (29%).5  Schimek accounts for federal CAFE regulations by including a time 

trend for years since 1978; he also includes dummy variables for the years 1974 and 1979, when 

gasoline-price controls were in effect, resulting in queues and sporadic rationing at service 

stations. These controls reduce the extent of autocorrelation in the residuals. 

These aggregate studies highlight the possible importance of lagged dependent variables 

(inertia) for sorting out short-run and long-run effects. But they do not settle the issue because 

they have trouble disentangling the presence of a lagged dependent variable from the presence of 

autocorrelation.  Their estimates of these dynamic properties are especially sensitive to the time 

period considered and to their treatment of the CAFE regulations. 

                                                 
3 Another study that found autocorrelation is that by Blair, Kaserman, and Tepel (1984). They obtain a rebound 
effect of 30%, based on monthly data from Florida from 1967 through 1976. They do not estimate models with 
lagged variables. 
4 These figures are from the linear lagged dependent variable model (model III in Table 1).  Estimates for the log-
linear model are nearly identical. 
5 These figures are his preferred results, from Schimek (1996), p. 87, Table 3, model (3). 
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Another type of study relies on pooled cross-sectional time-series data at a smaller 

geographical level of aggregation. Haughton and Sarkar (1996) construct such a data set for the 

50 U.S. States and the District of Columbia, from 1970 to 1991. Fuel prices vary by state, 

primarily but not exclusively because of different rates of fuel tax, providing an additional 

opportunity to observe the effects of fuel price on travel.  The authors estimate equations both for 

VMT per driver and for fuel intensity (the inverse of fuel efficiency), obtaining a rebound effect 

of about 16% in the short run and 22% in the long run.6  Here, autocorrelation and the effects of 

a lagged dependent variable are measured with sufficient precision to distinguish them; they 

obtain a statistically significant coefficient on the lagged dependent variable, implying a 

substantial difference between long and short run. Tackling yet another dynamic issue, Haughton 

and Sarkar find that fuel efficiency is unaffected by the current price of gasoline unless that price 

exceeds its historical peak – a kind of hysteresis. In that equation, CAFE is taken into account 

through a variable measuring the difference between the legal minimum in a given year and the 

actual fuel efficiency in 1975. However, that variable is so strongly correlated with the historical 

maximum real price of gasoline that they omit it in most specifications, casting doubt on whether 

the resulting estimates, especially of hysteresis, really control adequately for the CAFE 

regulation. 

It appears that the confounding of dynamics with effects of the CAFE regulation is a 

limiting factor in many studies. There is no agreement on how to control for CAFE, and results 

seem sensitive to the choice. This is partly because the standards were imposed at about the same 

time that a major increase in fuel prices occurred. But it is also because the control variables used 

are not constructed from an explicit theory of how CAFE worked. We attempt to remedy this in 

our empirical work. 

Studies measuring the rebound effect using micro data show a wider disparity of results 

than those based on aggregate data, covering a range from zero to about 90%. Two recent such 

studies use a cross section for a single year. West (2004), using the 1997 Consumer Expenditure 

Survey, estimates a rebound effect that diminishes strongly with income (across consumers) but 

is 87% on average, much higher than most studies. By contrast, Pickrell and Schimek (1999), 

using 1995 cross-sectional data from the National Personal Transportation Survey (NTPS), 

                                                 
6 This paragraph is based on models E and F in their Table 1, p. 115. Their variable, “real price of gasoline per 
mile,” is evidently the same as fuel cost per mile. 



 6 

obtain a rebound effect of just 4%.7 There are a number of reasons to be cautious about these 

results. West obtains an extremely low income-elasticity for travel, namely 0.02, in the 

theoretically preferred model which accounts for endogeneity between vehicle-type choice and 

vehicle use. Pickrell and Schimek’s results are sensitive to whether or not they include 

residential density as an explanatory variable, apparently because residential density is collinear 

with fuel price. We think the value of cross-sectional micro data for a single year is limited by 

the fact that measured fuel prices vary only across states, and those variations are correlated with 

unobserved factors that also influence VMT – factors such as residential density, congestion, and 

market penetration of imports. In our work, we eliminate the spurious effects of such cross-

sectional correlations by using fixed-effects specification, i.e. by including a dummy variable for 

each state. 

Two recent studies use micro data covering several different years, thereby taking 

advantage of additional variation in fuel price and other variables. Goldberg (1998) estimates the 

rebound effect using the Consumer Expenditure Survey for the years 1984-1990, as part of a 

larger equation system that also predicts automobile sales and prices. When estimated by 

Ordinary Least Squares (OLS), her usage equation implies a rebound effect (both short- and 

long-run, because the equation lacks a lagged variable) of about 20%.8 Greene, Kahn, and 

Gibson (1999) use micro data from the Residential Transportation Energy Consumption Survey 

and its predecessor, for six different years between 1979 and 1994. Their usage equation is part 

of a simultaneous system including vehicle type choice and actual fuel price paid by the 

individual. They estimate the rebound effect at 23% for all households (short- and long-run 

assumed identical), with a range from 17% for three-vehicle households to 28% for one-vehicle 

households. 

Several micro studies estimate model systems in which vehicle choice and usage are 

chosen simultaneously, thereby accounting for the endogeneity of fuel efficiency.9 Mannering 

                                                 
7 Their model 3, with odometer readings as dependent variable. They actually measure the elasticity of VMT with 
respect to gasoline price, εM,PF, which is equal to εM,PM as defined here. 
8 When estimated using instrumental variables to account for the endogeneity of vehicle type, Goldberg’s estimate 
diminishes to essentially zero. But in that model the variables representing vehicle type attain huge yet statistically 
insignificant coefficients (see her Table I), casting doubt in our minds on the ability of the data set to adequately 
account for simultaneity. 
9 Examples include Train (1986), Hensher et al. (1992), Goldberg (1998), and West (2004). 
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(1986) explicitly addresses the bias resulting from such endogeneity, finding it to be large, 

although in the direction opposite to what we expect: his estimate of |εM,PM| becomes 

considerably greater when endogeneity is taken into account.10 

Thus prior literature shows that aggregate estimates of the rebound effect, especially of 

the long-run effect, are sensitive to specification — in particular to the treatment of time patterns 

and CAFE standards. Disaggregate studies tend to produce a greater range of estimates; but those 

that exploit both cross-sectional and temporal variation are more consistent, finding a long-run 

rebound effect in the neighborhood of 20-25 percent. These results parallel those of three more 

comprehensive reviews, which report rebound estimates from numerous studies with means of 

10-16 percent for short-run and 26-31 percent for long-run rebound effect.11 Overall, we would 

regard long-run estimates of anywhere between 20 and 30 percent as compatible with previous 

studies, but we see less consensus on short-run estimates. 

 

3. Theoretical Foundations and Empirical Specification 

3.1 System of Simultaneous Equations 

 Our empirical specification is based on a simple aggregate model that simultaneously 

determines VMT, vehicles, and fuel efficiency. We assume that consumers in each state choose 

how much to travel accounting for the size of their vehicle stock and the per-mile fuel cost of 

driving (among other things). They choose how many vehicles to own accounting for the price of 

new vehicles, the cost of driving, and other characteristics. Fuel efficiency is determined jointly 

by consumers and manufacturers accounting for the price of fuel, the regulatory environment, 

and their expected amount of driving; this process may include manufacturers’ adjustments of 

the relative prices of various models, consumers’ adjustments via purchases of various models 

(including light trucks), consumers’ decisions about vehicle scrappage, and driving habits. 

 These assumptions lead to the following structural model: 

                                                 
10 This could occur if people who drive a lot spend more time in stop-and-go traffic, or if they invest more heavily in 
fuel-consuming amenities like air conditioning or stronger acceleration. 
11 De Jong and Gunn (2001), Table 2; Graham and Glaister (2002), p. 23; Goodwin, Dargay, and Hanly (2004), 
Tables 3, 4. The National Research Council (2002, p. 19), without distinguishing short from long run, quotes 10-20 
percent. 
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where M is aggregate VMT per adult; V is the size of the vehicle stock per adult; E is fuel 

efficiency; PV is a price index for new vehicles; PF is the price of fuel; PM≡PF/E is the fuel cost 

per mile; XM, XV and XE are exogenous variables (including constants); and RE represents 

regulatory measures that directly or indirectly influence fleet-average fuel efficiency.   

The standard definition of the rebound effect can be derived from a partially reduced 

form of (1), which is obtained by substituting the second equation into the first and solving for 

M. Denoting the solution by M̂ , this produces: 

 ( )[ ] ( )VMVMMMVMV XXPPMXPXPPMVMM ,,,ˆ,,,,ˆˆ ≡= . (2) 

We call this equation a “partially reduced form” because V but not E has been eliminated (E 

being part of the definition of PM); thus we still must deal with the endogeneity of PM as a 

statistical issue. The rebound effect is just PMM ,ˆε− , the negative of the elasticity of )(ˆ ⋅M with 

respect to PM. By differentiating (2) and rearranging, we can write this elasticity in terms of the 

elasticities of structural system (1): 
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Strictly speaking, the estimation of a statistical model proves associations, not causation. 

However, one advantage of a structural model is that it makes explicit the pathways by which 

those associations occur and thus allows the analyst to make more informed judgments about 

whether causality is at work. It seems to us that the key relationships we are interested in, 

involving VMT, vehicle stock, fuel efficiency, income, and fuel price, are plausibly represented 

by interpreting each equation in (1) as causal. We therefore adopt this interpretation in describing 

our results. 

 

3.2 Empirical Implementation 

While most studies reviewed in the previous section are implicitly based on (2), we 

estimate the full structural model based on system (1). We generalize it in two ways to handle 
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dynamics. First, we assume that the error terms in the empirical equations exhibit first-order 

serial correlation, meaning that unobserved factors influencing usage decisions in a given state 

will be similar from one year to the next: for example, laws governing driving by minors. 

Second, we allow for behavioral inertia by including the one-year lagged value of the dependent 

variable as a right-hand-side variable. Finally, we specify the equations as linear in parameters 

and with most variables in logarithms. Thus we estimate the following system: 
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with autoregressive errors: 

 k
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Here, lower-case notation indicates that the variable is in logarithms. Thus vma is the natural 

logarithm of VMT per adult; vehstock is the log of number of vehicles per adult; and fint is the 

log of fuel intensity, defined as the reciprocal of fuel efficiency.  Variable pf is the log of fuel 

price; hence log fuel cost per mile, pm, is equal to pf+fint. Variable pv is the log of a price index 

of new vehicles. The variable cafe measures fuel-efficiency regulation, as described below in 

Section 3.3.3. The individual variables in each vector k
tX  may be in either levels or logarithms. 

Subscript t designates a year, and u and ε are error terms assumed to have zero expected value, 

with ε assumed to be “white noise”.  

 Each lagged dependent variable can be interpreted as arising from a lagged adjustment 

process, in which the dependent variable moves slowly toward a new target value determined by 

current independent variables. The inertia of such movement can arise due to lack of knowledge, 

frictions in changing lifestyles, or slow turnover of the vehicle fleet state.  

In system (4), equation (3) becomes: 

 vmmv

vmv
PMM

PMM
Sb

αα
βαε

ε
−

+
==−

1
2,

,ˆ  (6) 

where bS designates the short-run rebound effect. If variable pm were included only in the form 

shown in (4), the structural elasticity εM,PM would just be its coefficient in the usage equation, 
m

1β . However, we include some variables in Xm that are interactions of pm with income,  
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urbanization, and pm itself.  Thus the elasticity, defined as the derivative of vma with respect to 

pm, varies with these measures. For convenience, we define the interaction variables in such a 

way that m
PMM 1, βε =  when computed at the mean values of variables in our sample. Since the 

other terms in (6) are small, this means that m
1β−  is approximately the short-run rebound effect 

at those mean values. 

To compute the long-run rebound effect, we must account for lagged values. The 

coefficient αm on lagged vma in the usage equation indicates how much a change in one year will 

continue to cause changes in the next year, due perhaps to people’s inability to make fast 

adjustments in lifestyle. If αmv were zero, we could identify εM,PM as the short-run rebound effect 

and εM,PM /(1-αm) as the long-run rebound effect. More generally, the long-run rebound bL  is 

defined by:12  
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The same considerations apply to other elasticities.  It can be shown that the short- and 

long-run elasticities of vehicle usage with respect to new-car price are: 
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and the short- and long-run elasticities of fuel intensity with respect to fuel price are 

approximately:13 
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 Our data set is a cross-sectional time series, with each state observed 36 times. We use a 

fixed effects specification, which we find to be strongly favored over random-effects by a 

standard Hausman test. The commonly used two-step Cochrane-Orcutt procedure to estimate 

autocorrelation is known to be statistically biased when the model contains a lagged dependent 

                                                 
12 Derivations of equations (7)-(9) can be found in Small and Van Dender (2005), section 5.1. 
13 The elasticities defined in (9) are those of ),,,,,(~

EVMEVF XXXRPPE , the fully reduced-form equation for E 
obtained by solving (1) for M, V, and E. The formulas given are approximations that ignore the effect of pf on fint 
via the effect of vehicle stock on vehicle usage combined with the effect of vehicle usage on fuel intensity. This 
combined effect is especially small because it involves the triple product fmmvv ααβ2 , all of whose values are small. 
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variable, as ours does (Davidson and MacKinnon, p. 336). Therefore we instead transform the 

model to a nonlinear one with no autocorrelation but with additional lags, and estimate it using 

nonlinear least squares.14 

 

3.3 Variables 

This section describes the main variables in (4) and their rationale. We identify each 

using both the generic notation in (1) and the variable name used in our empirical specification. 

Variables starting with lower case letters are logarithms of the variable described. All monetary 

variables are real. Data sources are given in Appendix A. 

 

3.3.1 Dependent Variables 

M: Vehicle miles traveled (VMT) divided by adult population, by state and year (logarithm: 

vma, for “vehicle-miles per adult”). 

V: Vehicle stock divided by adult population (logarithm: vehstock). 

1/E: Fuel intensity, F/M, where F is highway use of gasoline (logarithm: fint). 

 

3.3.2 Independent Variables other than CAFE 

PM: Fuel cost per mile, PF/E. Its logarithm is denoted pm ≡ ln(PF)–ln(E) ≡ pf+fint. For 

convenience in interpreting interaction variables based on pm, we have normalized it by 

subtracting its mean over the sample. 

PV: Index of real new vehicle prices (1987=100) (logarithm: pv). 15 

PF: Price of gasoline, deflated by consumer price index (1987=1.00) (cents per gallon). 

Variable pf is its logarithm normalized by subtracting the sample mean. 

XM, XV, XE:  See Appendix A. XM includes (pm)2 and interactions between normalized pm and 

two other normalized variables: log real income (inc) and fraction urbanized (Urban). All 

                                                 
14 If the original model is ttt uxy +′= β , with ut first-order serially correlated with parameter ρ, then the transformed 

model is 1 1( )t t t t ty y x xρ ρ β ε− − ′= + − +  with εt serially uncorrelated. This transformation is the standard option 
for autocorrelated models in the computer package Eviews 5, which we use: see Quantitative Micro Software 
(2004), equation (17.10). 
15 We include new-car prices in the second equation as indicators of the capital cost of owning a car. We exclude 
used-car prices because they are likely to be endogenous; also reliable data by state are unavailable. 
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equations include time trends to proxy for unmeasured systemwide changes such as 

residential dispersion, other driving costs, lifestyle changes, and technology. 

 

3.3.3 Variable to Measure CAFE Regulation (RE) 

We define a variable measuring the tightness of CAFE regulation, starting in 1978, based 

on the difference between the mandated efficiency of new passenger vehicles and the efficiency 

that would be chosen in the absence of regulation. The variable becomes zero when CAFE is not 

binding or when it is not in effect. In our system, this variable helps explain the efficiency of new 

passenger vehicles, while the lagged dependent variable in the fuel-intensity equation captures 

the inertia due to slow turnover of the vehicle fleet. 

The calculation proceeds in four steps, described more fully in Appendix B. First, we 

estimate a reduced-form equation explaining log fuel intensity from 1966-1977. Next, this 

equation is interpreted as a partial adjustment model, so that the coefficient of lagged fuel 

intensity enables us to form a predicted desired fuel intensity for each state in each year, 

including years after 1977. Third, for a given year, we average desired fuel intensity (in levels, 

weighted by vehicle-miles traveled) across states to get a national desired average fuel intensity. 

Finally, we compare the reciprocal of this desired nationwide fuel intensity to the minimum 

efficiency mandated under CAFE in a given year (averaged between cars and light trucks using 

VMT weights, and corrected for the difference between factory tests and real-world driving). 

The variable cafe is defined as the difference between the logarithms of mandated and desired 

fuel efficiency, truncated below at zero. 

The comparison is shown in Figure 1. We see that the desired efficiency of new vehicles 

(upper curve with long dashes) was mildly increasing over much of our time period, especially 

1975-1979 and 1984-1997. There were one-year upticks in 1974 and 1979, presumably due to 

queues at gasoline stations,16 and some leveling in 1988-1991, 1998, and 2001 due to decreases 

in real fuel prices. The CAFE standard exhibited a very different pattern, rising rapidly from 

1978-1984 and then flattening out. We can see that by this definition, the CAFE standard has 

been binding throughout its time of application, but that its tightness rose dramatically during its 

                                                 
16 The uptick in 1979 is due to our assumption that the gasoline queues in 1979 would have the same effect on 
desired efficiency as those in 1974, which are captured by the 1974 dummy variable in the equation for fuel 
intensity fit on 1966-1977 data. 
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first six years and then gradually diminished until it is just barely binding in 2001. This pattern, 

shown in the lower part of the figure (curve with long dashes) is obviously quite different from a 

trend starting at 1978 and from the CAFE standard itself, both of which have been used as a 

variable in VMT equations by other researchers. 

Implicit in the definition of our regulatory variable is a view of the CAFE regulations as 

exerting a force on every state toward greater fuel efficiency of its fleet, regardless of the desired 

fuel efficiency in that particular state. Our reason for adopting this view is that the CAFE 

standard applies to the nationwide fleet average for each manufacturer; the manufacturer 

therefore has an incentive to use pricing or other means to improve fuel efficiency everywhere, 

not just where it is low. 

Also shown in Figure 1 is an alternate calculation of desired fuel efficiency (curves with 

short dashes). This calculation, explained more fully in Appendix B, involves yet another step, 

which is to reestimate the reduced-form equation predicting desired log fuel intensity on the 

entire sample period, instead of just the pre-CAFE period. We do this by using the cafe variable 

just described (with one modification, which is that the trend is excluded from the estimating 

equation from which the variable is extracted) as a preliminary regulatory variable. The 

advantage of this alternate version is that the equation for desired efficiency is estimated with 

greater precision. However, it is also less robust with respect to inclusion or omission of trend 

variables, so we prefer our original (“base”) version for subsequent statistical analysis. As we 

shall see, they give nearly identical results for the rebound effect and most other elasticities. 
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Figure 1. Desired and Mandated Fuel Efficiencies and Corresponding cafe Variables 

 

 

3.3.4 State population data 

 Several variables of our specification, including the first two endogenous variables, make 

use of data on adult or total state population. Such data are published by the U.S. Census Bureau 

as midyear population estimates; they use demographic information at the state level to update 

the most recent census count, taken in years ending with zero. However, these estimates do not 

always match well with the subsequent census count, and the Census Bureau does not update 

them to create a consistent series. As a result, the published series contains many instances of 

implausible jumps in the years of the census count. For our preferred specification, we apply a 
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correction assuming that the census counts are accurate and that the error in estimating 

population between them grows linearly over that ten-year time interval.17 

 We believe this approach is better than using the published estimates because it makes 

use of Census year data that were not available at the time the published estimates were 

constructed (namely, data from the subsequent census count).  It should also be better than a 

simple linear interpolation between Census counts, because it incorporates relevant demographic 

information that is contained in the published population estimates.18 The impact of using either 

of these alternative population estimates is noticeable but not major. The published data yield the 

highest estimates of the long-run rebound effect (25.8% in the long run), while the linear 

interpolation produces the lowest estimate (20.6%); these values bracket the result of 22.2% 

using our preferred data. 

 The considerable difficulties we encountered in measuring adult population, by state and 

year, have discouraged us from seeking to refine our specification with additional variables 

measuring the age distribution of the adult population, even though they are known to have 

effects on vehicle ownership and travel. 

 

3.3.5 Data Summary 

Table 1 shows summary statistics for the data used in our main specification. We show them for 

the original rather than the logged version of variables; we also show the logged version after 

normalization for those variables that enter the specification through interactions. 

 

 

                                                 
17 We estimate this 10-year cumulated error by extrapolating from the ninth year’s figure: namely, it is (∆P10) = 
[P0+(10/9)⋅(P9-P0)] - P10, where Py is the published value in the y-th year following the most recent count. We then 
replace the published value Py by 10)10/( PyPP y

c
y ∆⋅−= . 

18 Our corrected value in year y can be written as { }9intint −−+= yyy
c
y PPPP , where int

yP  is the interpolated value 

between census counts and 9int−
yP  is the interpolated value between years 0 and 9. In other words, it adjusts int

yP  by 
accounting for how the inter-census estimate Py differs from the nine-year linear trend of inter-census estimates. 
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Name Definition  Mean  Std. Dev.  Min.  Max.

Vma VMT per adult 10,929 2,538 4,748 23,333
Vehstock Vehicles per adult 0.999 0.189 0.453 1.743
Fint Fuel intensity (gal/mi) 0.0615 0.0124 0.0344 0.0919

Pf Fuel price, real (cents/gal) 108.9 23.5 60.3 194.9
pf log Pf, normalized 0 0.2032 -0.5696 0.6033
Pm Fuel cost/mile, real (cents/mi) 6.814 2.275 2.782 14.205
pm log Pm, normalized 0 0.3490 -0.8369 0.7935

Income Income per capita, real 14,588 3,311 6,448 27,342
inc log Income, normalized 0 0.2275 -0.7909 0.6538
Adults/road-mile Adults per road mile 57.73 68.27 2.58 490.20
Pop/adult Population per adult 1.4173 0.0901 1.2265 1.7300
Urban Fraction of pop. in urban areas 0.7129 0.1949 0.2895 1.0000
Railpop 0.0884 0.2073 0.0000 1.0000

Pv Price of new vehicles (index) 1.066 0.197 0.777 1.493
Interest Interest rate, new-car loans (%) 10.83 2.41 7.07 16.49
Licenses/adult Licensed drivers per adult 0.905 0.083 0.625 1.149

Notes: Units are as described in Appendix A.

Fraction of pop. in metro areas 
served by heavy rail

Variables with capitalized names are shown as levels, even if it is their logarithm that enters our 
specification. Variable Urban is shown unnormalized, although it is normalized when entering our 

ifi i

Table 1. Summary Statistics for Selected Variables

 
 

4. Results 

4.1 Structural Equations 

 

The results of estimating the structural system are presented in Tables 2-4, excluding the 

estimated fixed-effect coefficients. Each table shows two different estimation methods: three-

stage least squares (3SLS) and ordinary least squares (OLS).19 We also carried out estimations 

                                                 
19 For both 3SLS and 2SLS, the list of instrumental variables includes one lagged value of each exogenous variable 
and two lagged values of each dependent variable, as necessitated by the existence of both first-order correlation and 
lagged dependent variables in our specification: see Fair (1984, pp. 212-213) or Davidson and MacKinnon (1993, 
section 10.10). In addition, the inclusion in our specification of pm^2 ≡ (pf+fint)2 requires including as instruments 
those combinations of variables that appear when fint is replaced by its regression equation and (pf+fint)2 is 
expanded. As noted by Wooldridge (2002, section 9.5), it is not usually practical to include every such combination 
separately; he suggests as a compromise using combinations of the composite variable fint_inst, defined as the 
predicted value of fint based on the coefficients of an OLS estimate of the fint equation. We adopt this suggestion by 
including pf2, pf*fint_inst, and (fint_inst)2 among the instruments. This procedure ignores the endogeneity of vma 
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by two-stage least squares (2SLS) and generalized method of moments (GMM), as  discussed in 

Section 4.4. 

The VMT equation (Table 2) explains how much driving is done by the average adult, 

holding constant the size of the vehicle stock. The coefficients on fuel cost per mile (pm) and its 

interaction with income are precisely measured and in the expected direction; we discuss their 

magnitudes in the next subsection. Many other coefficients are also measured with good 

precision and demonstrate strong and plausible effects. The income elasticity of vehicle travel 

(conditional on fleet size and efficiency), at the mean value of pm, is 0.11 in the short run and 

0.11/(1-0.79)=0.53 in the long run. Each adult tends to travel more if there is a larger road stock 

available (negative coefficient on adults/road-mile) and if the average adult is responsible for 

more total people (pop/adult). Our measure of urbanization (Urban) has a statistically significant 

negative effect on driving; but the effect is small, perhaps indicating that adults/road-mile better 

captures the effects of congestion.20 The availability of rail transit has no discernible effect, 

probably because it does not adequately measure the transit options available. The two years 

1974 and 1979 exhibited a lower usage, by about 4.4%, other things equal.21 

The negative effect of adults/road-mile can equivalently be viewed as confirmation that 

increasing road capacity produces some degree of induced demand, a result found by many other 

researchers. However, because we have data only on road-miles, not lane-miles, our findings are 

not directly comparable to other studies of induced demand.22 

The coefficient on the lagged dependent variable implies considerable inertia in behavior, 

with people adjusting their travel in a given year by just 21 percent of the ultimate shift if a given 

                                                                                                                                                             
among the variables explaining fint in this first-stage OLS, but we think any resulting error is small because vma is 
just one of seven statistically significant variables explaining fint. 
20 The long-run difference in log(VMT) between otherwise identical observations with the smallest and largest 
urbanization observed in our sample (see Table 1) is only 0.0548 x 0.7105 / (1-0.7907) = 0.19; whereas the 
corresponding variation with adults/road-mile is 0.0203 x [ln(490.2)-ln (2.58)] / (1-0.7907) = 0.51. 
21 We get nearly identical coefficients if we include separate dummy variables for 1974 and 1979. We thus combine 
them for parsimony and to simplify the construction of the variable cafe (which requires extrapolating from pre-
1979 to post-1979 behavior). 
22 Our implied long-run elasticity of VMT with respect to road-miles is 0.020//(1-0.7907)≈0.1, considerably smaller 
than the long-run elasticities with respect to lane-miles of 0.8 found by Goodwin (1996, p. 51) and Cervero and 
Hansen (2002, p. 484). Probably this is because road-miles is an inadequate measure of capacity. We have not 
controlled for endogeneity of road-miles, but most researchers have found that such controls have little effect on the 
elasticity. 
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change is maintained permanently. The equation exhibits only mild autocorrelation, giving us 

some confidence that our specification accounts for most influences that move sluggishly over 

time. 

OLS overestimates the rebound effect, possibly because it attributes the relationship 

between VMT and cost per mile as the latter causing the former, whereas the full system shows 

that some of it is due to reverse causality. In this particular model, OLS overestimates the 

absolute value of the structural coefficient of cost per mile by 88%. 

 

Variable Coefficient Stndrd. Error Coefficient Stndrd. Error

vma(t-1) 0.7907 0.0128 0.7421 0.0158
vehstock 0.0331 0.0110 0.0478 0.0126

pm -0.0452 0.0048 -0.0852 0.0051
pm^2 -0.0104 0.0068 0.0152 0.0088
pm*inc 0.0582 0.0145 0.0768 0.0194
pm*Urban 0.0255 0.0106 0.0159 0.0144

inc 0.1111 0.0141 0.1103 0.0157
adults/road-mile -0.0203 0.0049 -0.0178 0.0068
pop/adult 0.1487 0.0461 0.0238 0.0513
Urban -0.0548 0.0202 -0.0514 0.0226
Railpop -0.0056 0.0063 -0.0002 0.0089
D7479 -0.0442 0.0035 -0.0367 0.0035
Trend 0.0004 0.0004 -0.0009 0.0004

constant 1.9950 0.1239 2.5202 0.1522
rho -0.0942 0.0233 -0.0147 0.0295

No. observations
Adjusted R-squared
S.E. of regression
Durbin-Watson stat
Sum squared resid

Notes: Bold or italic type indicates the coefficient is statistically significant at the 5% or 10% level, respectively.
Estimates of fixed effects coefficients (one for each state except Wyoming) not shown.  

1.6788 1.6156

Variables inc , Urban , and the components of pm  are normalized by subtracting their sample mean values, prior 
to forming interaction variables. Thus, the coefficient of any non-interacted variable gives the effect of that 
variable on vma at the mean values of other variables.

OLS here means single-equation least squares accounting for autocorrelation but with no instrumental variables.  
It is estimated non-linearly (see note 14.)

0.0317 0.0311
1.9181 1.9927

1,734 1,734
0.9801 0.9809

Table 2. Vehicle-Miles Traveled Equation

Estimated Using 3SLS Estimated Using OLS
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In the vehicle stock equation (Table 3), the cost of driving a mile has no significant 

effect.  New-car price and income do have significant effects, as do road provision (adults/road-

mile), the proportion of adults having drivers' licenses (licences/adult), and credit conditions 

(interest). As expected, there is strong inertia in expanding or contracting the vehicle stock, as 

indicated by the coefficient 0.845 on the lagged dependent variable. This means that any short-

run effect on vehicle ownership, for example from an increase in income, will be magnified by a 

factor of 1/(1-0.845) = 6.45 in the long run. This presumably reflects the transaction costs of 

buying and selling vehicles as well as the time needed to adjust planned travel behavior. 

 

Variable Coefficient Stndrd. Error Coefficient Stndrd. Error

vehstock(t-1) 0.8450 0.0148 0.8397 0.0152
vma 0.0238 0.0161 0.0434 0.0148

pv -0.0838 0.0383 -0.0792 0.0391
pm -0.0009 0.0065 0.0065 0.0065

inc 0.0391 0.0155 0.0330 0.0156
adults/road-mile -0.0228 0.0070 -0.0214 0.0072
interest -0.0143 0.0071 -0.0176 0.0073
licenses/adult 0.0476 0.0191 0.0525 0.0197
Trend -0.0015 0.0008 -0.0014 0.0008

constant -0.0618 0.1581 -0.2480 0.1463
rho -0.1319 0.0281 -0.1238 0.0290

No. observations
Adjusted R-squared
S.E. of regression
Durbin-Watson stat
Sum squared resid

Notes: Bold or italic type indicates the coefficient is statistically significant at the 5% or 10% level, respectively.
Estimates of fixed effects coefficients (one for each state except Wyoming) not shown.

2.1668 2.1639

OLS here means single-equation least squares accounting for autocorrelation but with no instrumental variables.  
It is estimated non-linearly (see note 14.)

0.0360 0.0360
1.9487 1.9548

1,734 1,734
0.9645 0.9645

Table 3. Vehicle Stock Equation

Estimated Using 3SLS Estimated Using OLS

 
 

 The results for fuel intensity (Table 4) show a substantial effect of annual fuel cost, in the 

expected direction. The effect of fuel price remains strong even if we allow the two components 
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of annual fuel cost, namely pf and vma, to have separate coefficients.23 This is consistent with 

prior strong evidence that people respond to fuel prices by altering the efficiency of new-car 

purchases. The results also suggest that CAFE regulation had a substantial effect of enhancing 

the fuel efficiency of vehicles – at its maximum value of 0.35 in 1984, the cafe variable 

increased long-run desired fuel efficiency by 21 percent.24 Urbanization appears to increase fuel 

efficiency, perhaps due to a preference for small cars in areas with tight street and parking space. 

The time trends show a gradual tendency toward more fuel-efficient cars, starting in 1974 and 

accelerating in 1980 – possibly reflecting the gradual development and dissemination of new 

automotive technology in response to the fuel crises in those years. Like vehicle stock, fuel 

intensity demonstrates considerable inertia, presumably reflecting the slow turnover of vehicles. 

 

                                                 
23 In this specification we are unable to identify separately the effects of pf and vma with anything like satisfactory 
precision. In simpler specifications (see Section 4.4), we are able to separate them and we then find that fuel price 
remains statistically significant. 
24 In 1984, the cafe  variable  changes the logarithm of desired efficiency by +0.1011x0.35/(1-0.8138) =0.190, and 
exp(0.190)=1.21.  The alternative version of the cafe variable, depicted in Figure 1, reaches its maximum in 1986, 
and at this value increases long-run desired fuel efficiency by exp{0.1368x0.23/(1-0.8075)}, or 18%. 
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Variable Coefficient Stndrd. Error Coefficient Stndrd. Error

fint(t-1) 0.8138 0.0137 0.7894 0.0162

vma+pf -0.0460 0.0069 -0.0934 0.0075
cafe -0.1011 0.0115 -0.1018 0.0144

inc 0.0025 0.0163 0.0082 0.0172
pop/adult -0.0111 0.0691 0.0607 0.0814
Urban -0.1500 0.0522 -0.1528 0.0663
D7479 -0.0105 0.0045 -0.0056 0.0046

Trend66-73 0.0006 0.0010 0.0015 0.0013
Trend74-79 -0.0024 0.0010 0.0006 0.0012
Trend80+ -0.0037 0.0004 -0.0047 0.0005

constant -0.1137 0.0809 0.2357 0.0903
rho -0.1353 0.0236 -0.0966 0.0292

No. observations
Adjusted R-squared
S.E. of regression
Durbin-Watson stat
Sum squared resid

Notes: Bold or italic type indicates the coefficient is statistically significant at the 5% or 10% level, respectively.
Estimates of fixed effects coefficients (one for each state except Wyoming) not shown.

2.6424 2.5961

OLS here means single-equation least squares accounting for autocorrelation but with no instrumental variables.  
It is estimated non-linearly (see note 14.)

0.9604 0.9611
0.0398 0.0394

Estimated Using 3SLS Estimated Using OLS

1,734 1,734

Table 4. Fuel Intensity Equation

1.9515 2.0571

 
 

4.2 Rebound Effects and Other Elasticities 

Table 5 shows the cost-per-mile elasticity of driving (the negative of the rebound effect) 

and some other elasticities implied by the structural models.  The interactions through the 

simultaneous equations modify only slightly the numbers that can be read directly from the 

coefficients. In particular, the average cost-per-mile elasticity in the sample is -0.0452, 

indistinguishable (within the precision shown) from the coefficient of pm in Table 2. Thus the 

average rebound effect in this sample is estimated to be approximately 4.5% in the short run, and 

22.2% in the long run. 
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Variable Short Run Long Run Short Run Long Run

Elasticity of VMT with respect to
fuel cost per mile: (a)
   At sample average -0.0452 -0.2221 -0.0850 -0.3398

(0.0048) (0.0238) (0.0052) (0.0251)

   At US 1997-2001 avg. (b) -0.0216 -0.1066 -0.0806 -0.3216
(0.0090) (0.0433) (0.0109) (0.0438)

   At US 1997-2001 avg. if -0.0311 -0.1531 -0.0666 -0.2648
    pm  stayed at '66-'01 avg. (c) (0.0060) (0.0299) (0.0068) (0.0311)

Elasticity of VMT with respect to
new veh price -0.0028 -0.0876 -0.0038 -0.0964

(0.0056) (0.0277) (0.0077) (0.0287)

Elasticity of fuel intensity 
with respect to fuel price:
   At sample average -0.0440 -0.2047 -0.0861 -0.3480

(0.0067) (0.0338) (0.0070) (0.0404)

Elasticity of fuel consumption
with respect to fuel price:
   At sample average -0.0873 -0.3813 -0.1638 -0.5695

(0.0056) (0.0277) (0.0077) (0.0287)

   At US 1997-2001 avg. (b) -0.0657 -0.3097 -0.1601 -0.5616
(0.0095) (0.0372) (0.0132) (0.0333)

   At US 1997-2001 avg. if -0.0744 -0.3380 -0.1485 -0.5377
    pm  stayed at '66-'01 avg. (c) (0.0065) (0.0316) (0.0087) (0.0328)
Notes: (a) The rebound effect is just the negative of this number (multiplied by 100 if expressed as a percent).
(b) Elasticities measured at the average 1997-2001 values of pm , inc , and Urban for all US.
(c) Same as (b) but setting the coefficient of pm^2 equal to zero.
Asymptotic standard errors in parentheses are calculated from the covariance matrix of estimated coefficients using the Wald 
test procedure for an arbitrary function of coefficients in Eviews 5.

Table 5. Rebound Effect and Other Price Elasticities

Estimated Using 3SLS Estimated Using OLS

 
Use of OLS overestimates the short- and long-run rebound effects by 88% and 53%, 

respectively. The short-run OLS estimate (8.5%) is well within the consensus of the literature, 

whereas our 3SLS estimate is somewhat below the consensus. This comparison might suggest 

that many estimates in the literature are overstated because of endogeneity bias. But such a 

conclusion would be speculative given the poor performance of the OLS specification on other 

grounds. We found the OLS results sensitive to slight changes in specification – sometimes 

indicating implausibly high autocorrelation and implausibly small coefficients on lagged 
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dependent variables – whereas 2SLS and 3SLS results are quite robust. Thus differences among 

OLS results in the literature, and differences between those results and ours, may be caused as 

much by differences in specification as by endogeneity bias. 

The model for vehicle usage discerns additional influences on the rebound effect. The 

coefficient on pm*inc in Table 2 shows that a 0.1 increase in inc (i.e. a 10.5 percent increase in 

real income) reduces the magnitude of the short-run rebound effect by about 0.58 percentage 

points. This appears to confirm the theoretical expectation that higher incomes make people less 

sensitive to fuel costs. Urbanization has a smaller effect: a 10 percentage-point increase in 

urbanization reduces the rebound effect by about 0.25 percentage points. Finally, fuel cost itself 

raises the rebound effect as expected (coefficient of pm^2 in Table 2), but only modestly and 

without statistical significance. 

To get an idea of the implications of such variations, we compute the short- and long-run 

rebound effects for values of income, urbanization, and fuel costs of driving equal to those of the 

average state over the most recent five-year period covered in our data set, namely 1997-2001. 

Using the 3SLS results, we see that the short-run rebound effect is reduced to 2.2% and the long-

run effect to 10.7% (second row in Table 5). If fuel prices in 1997-2001 had been 58 percent 

higher, corresponding roughly to the $2.35 nominal price observed in the first two months of 

2006, these figures would be 3.1% and 15.3%, around two-thirds the values at the sample 

average.25  

Thus the rebound effect decreased in magnitude over our sample period; our base 

specification attributes this decrease mostly to rising incomes but partly to falling fuel prices. As 

we shall see in the next subsection, we could alternatively explain virtually all of the decline as 

due to rising incomes, by excluding pm^2 from the specification. But these two alternate 

explanations have quite different implications for future scenarios. Most analysts would expect 

incomes to continue rising, but would expect fuel prices to rise rather than continue falling. Thus 

our use of a model including variable retaining pm^2 provides more conservative results for 

making projections into the future and also avoid inadvertently biasing results by omitting a 

theoretically justified variable solely because of our inability to estimate its coefficient with high 

precision. 

                                                 
25 This scenario happens to put pm at its sample average, and thus enables us also to see the effect of rising income 
without falling fuel prices. 
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The second panel of Table 5 shows that higher new car prices reduce travel, but only by a 

small amount, with a long-run elasticity of -0.09. The third and fourth panels provide 

information about how fuel prices affect fuel intensity and overall fuel consumption. The fuel-

price elasticity of fuel intensity, given by equation (9), is estimated with good precision thanks to 

the small standard error on the coefficient of vma+pf in Table 4. Combining it with the elasticity 

of vehicle-miles traveled gives the total price-elasticity of fuel consumption, shown in the last 

panel of the table.26 The long-run estimate is -0.38, within the range of recent studies reviewed 

by Parry and Small (2005) although somewhat lower than most.27 

Thus, our results suggest that the response to fuel prices has become increasingly 

dominated by changes in fuel efficiency rather than changes in travel.  Whether this remains the 

case after 2001 depends on how incomes and fuel costs of driving evolve.  For example, our 

point estimates imply that the decline in rebound effect arising from growth in real income of 

one percent would be offset by an increase in real fuel cost per mile of about 2.8 percent. This in 

turn could be brought about by a 3.5 percent increase in real fuel price and the accompanying 0.7 

                                                 
26 Writing the identity F=M/E, giving fuel consumption as a ratio of VMT and fuel efficiency, in its logarithmic 
form f=m–e, then differentiating with respect to pF, the logarithm of fuel price, yields the following equation when 
we remember that m depends on the logarithm of cost per mile, pm=pF–e: 

 
FFFF dp

de
dp
de

i
m

p
m

dp
df

−







⋅

∂
∂

−
∂
∂

= . 

In elasticity terms, using notation similar to that in (7)-(9): 

 PFEPFEPMMPFF ,~,~,ˆ, )1( εεεε −−⋅=  (10) 

where PMM ,ˆε  and PFE ,~ε−  are the elasticities reported in the first two panels of Table 5. This equation is derived by 
USDOE (1996, p. 5-11) and Small and Van Dender (2005, eqn. 6). We regret that in the July 2006 version of this 
working paper, and in the subsequent published shorter version in Energy Journal (vol. 28, no. 1, 2007, pp. 25-51), 
we accidentally omitted the term in parentheses in equation (10) when computing εF,PF for Table 5 and therefore 
overstated the magnitudes of εF,PF. Comparing the published 3SLS point estimates (last three rows of Table 5) with 
those shown here, we find they were overstated by 0.0010–0.0019 for the short run and by 0.0243–0.0425 for the 
long run, which is 2% of the correct value for the short run and 8–12% for the long run. The same correction applies 
to Table B2. 
27 Parry and Small (2005) choose the long-run price elasticity of fuel consumption equal to be -0.55 as the best 
consensus from the literature, with 40% of the elasticity due to mileage changes. By comparison, our estimate 
is -0.38, with 46% of it due to changes in vehicle travel, computed from Table 5 as 0.2221⋅(1-0.2047)/0.3815. This 
proportion falls to 27% when computed for conditions prevailing in the last five years of our sample. 
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percent fall in fuel intensity.28 To put it another way, a doubling of real fuel price would be offset 

by a 22 percent increase in real income in their influence on the rebound effect.29 

 

4.3 Estimates on separate time periods 

 As noted, we find the rebound effect to be much smaller when computed for values of per 

capita income characterizing recent years than when computed for average values over the 36-

year estimation period. Would we see this same decline if we just estimated a model with a 

constant rebound effect on different time periods? We answered this question using three twelve-

year time periods. The resulting estimates are considerably less precise and less robust, 

especially for the fuel intensity equation: its estimated autocorrelation coefficient is 

uncomfortably large in magnitude during the second and third time periods (+0.47 and -0.25), 

and the estimates of the effect of cafe (for the two periods where it was in effect) show 

implausible variations. Furthermore, the coefficient of lagged vma in the usage equation is 

considerably smaller (0.55 to 0.58) when estimated on these subsamples than when estimated on 

the full sample. Both problems may reflect the inability with such short time periods to clearly 

identify the nature of variation over time, especially given that two of the eleven years’ data are 

lost because of using variables with two lags as instruments. 

 Nevertheless, the summary results in Table 6 clearly show the hypothesized decline in the 

rebound effect as we move from the first two periods to the last period. The table shows our 

3SLS estimates of the short- and long-run rebound effect in each time period, and compares them 

with those predicted by our base model at the average values of variables for that period. Except 

for the first period, the long-run estimates agree closely with these full-model predictions. Short-

run estimates are mostly larger than the prediction. The first column of the table also shows that 

the average rebound effect estimated over the entire period does not depend strongly on whether 

                                                 
28 These statements are approximate because they equate changes in logs to percentage changes and also because 
they ignore the small terms in αmv in (6) and (7); they are also qualified by the fact that the effect of fuel prices is not 
statistically significant. The first statement is based on coefficients βpm^2 of pm^2 and βpm*inc of pm⋅inc in Table 2, 
remembering that ∂εM,PM/∂pm ≡ ∂2vma/∂pm2 = 2βpm^2 and ∂εM,PM/∂inc ≡ ∂2vma/∂pm∂inc = βpm*inc. The second 
statement is based on the long-run elasticity of fuel intensity with respect to fuel price in Table 5, which is constant 
over time in our specification except for the small terms in αfm in (9); it implies that a fuel-price increase of 3.5 
percent causes a change in fuel intensity of –0.20x3.5=0.7 percent. 
29 The offsetting income change is computed from ln(Inc1/Inc0) = ∆inc = ∆pF/3.5 = (ln2)/3.5 = 0.20, so that Inc1/Inc0 
= exp(0.20) = 1.22. 
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the model includes interaction terms. The same is true if the rebound effect is allowed to vary 

with a simple time trend but not income or urbanization, although in that model the interaction 

term is not significant (results not shown). 

 

Full Sample
1966-2001 1966-1977 1978-1989 1990-2001

Short run:
   Estimated constant value -0.0511 -0.0724 -0.0819 -0.0366

(0.0046) (0.0208) (0.0109) (0.0109)

   Predicted from full model -0.0452 -0.0638 -0.0465 -0.0197
(0.0048) (0.0055) (0.0044) (0.0083)

Long run:
   Estimated constant value -0.2620 -0.1800 -0.1963 -0.0831

(0.0249) (0.0475) (0.0297) (0.0255)

   Predicted from full model -0.2221 -0.3235 -0.2359 -0.1006
(0.0238) (0.0318) (0.0254) (0.0420)

Table 6. Rebound Effect Estimates from Different Time Periods

Separate Subsamples

Notes: Estimated standard errors are in parentheses. Results shown as "estimated constant value" are 
from a model estimated without pm^2 , pm *inc , or pm *Urban . Results shown as "predicted from 
full model" are calculated from our base model in Tables 2-4 using the average values of pm , inc 
and Urban for the time period shown.

 
 

 Thus this exercise lends support to our interpretation that the rebound effect has indeed 

declined between the time periods 1966-1989 and 1990-2001. Although we cannot say 

definitively that the reason is higher incomes, that explanation seems the most likely given its 

theoretical justification and good data fit. 

 

4.4 Other Specifications and Estimation Methods 

 As we have seen, fuel prices are potentially important for the rebound effect; but their 

influence depends on a coefficient (that of pm^2) whose estimate is statistically imprecise. We 

therefore explore here the behavior of the model if that term is omitted. We also show some 

2SLS results for both the full model and this reduced model, in order to examine more carefully 

whether specification error in the model could be adversely affecting the 3SLS estimates. 
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Comparisons are shown in Table 7, whose top panel repeats 3SLS results already presented in 

Tables 2 and 5. 

 

Variable Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

pm -0.0452 0.0048 -0.0500 0.0052 -0.0485 0.0036
pm^2 -0.0104 0.0068 0.0077 0.0092 0.0055 0.0060
pm*(inc) 0.0582 0.0145 0.1073 0.0198 0.0950 0.0134
pm*(Urban) 0.0255 0.0106 0.0219 0.0145 0.0177 0.0096

LR Rebound Effect:
  At sample average -0.2221 0.0238 -0.2293 0.0243 -0.2378 0.0182
  At 1997-2001 avg. -0.1066 0.0433 -0.1437 0.0504 -0.1517 0.0303
  At 1997-2001 avg. -0.1531 0.0299 -0.1114 0.0324 -0.1271 0.0229
    but pf= $1.93

pm -0.0464 0.0046 -0.0466 0.0049 -0.0449 0.0038
pm^2 --- --- --- --- --- ---
pm*(inc) 0.0881 0.0170 0.1038 0.0228 0.0944 0.0164
pm*(Urban) 0.0126 0.0118 0.0200 0.0160 0.0212 0.0125

LR Rebound Effect:
  At sample average -0.2207 0.0234 -0.2190 0.0246 -0.2268 0.0208
  At 1997-2001 avg. -0.1212 0.0314 -0.1023 0.0366 -0.1136 0.0275

Note: Bold or italic type indicates the coefficient is statistically significant at the 5% or 10% level, respectively.

Full Specification

Simplified Specification Excluding pm^2

Table 7. Models With and Without Squared Term in Fuel Cost per Mile

3SLS 2SLS GMM

 
 

 Several observations are prompted by comparing the four models defined by these two 

specifications and two estimation methods. First, all four models predict about the same average 

rebound effect over the sample: 4.5–5.0 percent in the short run, 22–23 percent in the long run. 

Second, the simplified specification exhibits less difference between 3SLS and 2SLS than the 

full specification. In particular, both 3SLS and 2SLS predict that the rebound effect is only about 

half as large in the latest five years as it is over the entire sample. Third, with 3SLS, the 

simplified specification is somewhat more conservative than the full specification in predicting 

how much the rebound effect has declined during the period; but it is more radical in the 
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predicted effect of income because this simplified specification does not use fuel prices to help 

explain the decline. 

 Thus, the simplified specification behaves quite reliably and the full specification is 

similar to it except that it allows for an influence of fuel cost on the rebound effect. This leads us 

to prefer the full specification as the better source of point estimates and policy-relevant 

predictions, even though those predictions – if they involve changes in fuel cost per mile – are 

based on a statistically insignificant coefficient. Furthermore, the stability of the simplified 

specification lends support to the view that the model is well specified, making 3SLS a suitable 

estimator. Indeed, the table suggests that 2SLS has difficulty disentangling the effects of pm and 

pm^2 in the full specification — it yields a positive coefficient for pm^2, opposite to the 

theoretical prediction. Statistically, this contrast is within sampling error but it does make 2SLS 

less satisfactory as a source of point estimates for policy analysis. 

 The third pair of columns in Table 7 shows the results of using a Generalized Method of 

Moments (GMM) estimator that allows the residuals to be correlated arbitrarily over time and for 

their variances to vary over time. Similarly, we estimated a GMM model (not shown) allowing 

for arbitrary contemporaneous correlation and heteroskedasticity across states.30 We were 

prompted to try these estimators because Bertrand et al. (2004) suggests that  3SLS might 

understate standard errors due to heteroscedasticity or inadequate controls for time-varying 

unobserved effects.31 But in fact we see that the standard errors are little different with GMM. 

Most point estimates are the same also, but the GMM coefficient of pm^2 switches to a 

theoretically implausible sign, although it remains statistically insignificant. We therefore prefer 

the 3SLS results on practical grounds, and are reassured that GMM produces essentially the 

same standard errors. 

 We also re-estimated our structural models using the alternative version of the cafe 

variable describing tightness of fuel efficiency regulations, described earlier. Results are shown 

in Appendix B. There is little difference except in the fuel intensity equation, where the effects of 

                                                 
30 These estimates were implemented in EViews 5 using the GMM estimator with “White period” weights and 
“White cross section” weights, respectively. They are asymptotically efficient in different ways: the first as the 
number of time periods grows, the second as the number of cross-sectional observations grows. Either can be less 
efficient than 3SLS in finite samples, however (Wooldridge 2002, p. 196). 
31 In principle one could handle this concern by computing robust standard errors from the 3SLS results, but doing 
so is impractical due to the complexity of our model system. Such standard errors are calculated automatically by 
the GMM procedure. 
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fuel price and cafe are both larger using the alternative version of cafe. This results in total fuel 

consumption responding more sensitively to changes in fuel prices or in the stringency of cafe 

standards.  

 To summarize, all models find that the rebound effect declined over the period. We prefer 

our base specification because it allows for a plausible set of reasons for this decline, and we 

prefer the 3SLS estimator because it provides theoretically correct signs for the relevant 

coefficients. In terms of policy, the full specification with 3SLS also happens to be the most 

conservative approach in explaining our main result, which is that the rebound effect declines 

with income. Assuming real income continues to grow, any of our models will project a further 

decline from this source in the future; but the magnitude of that predicted decline will be smaller 

using our preferred results than using any other models shown in Table 7 because our preferred 

results contain the smallest estimate of the coefficient of pm*inc. 

 

4.5 Caveats 

Despite the generally good performance of our equation system, we call attention to three 

limitations. First, there are well-known problems with the VMT data collected by the US Federal 

Highway Administration. These data are reported by states, which lack a uniform methodology 

for estimating them – for example, some rely on sporadic vehicle counts, while others multiply 

fuel consumption (measured from tax records) by an independent estimate of fleet fuel 

efficiency.32 

However, we have no reason to think that these problems bias our results. The posited 

sources of measurement error are mostly unrelated to our independent variables; and even if they 

were, our use of fixed effects eliminates the spurious effect of any cross-state relationship that is 

consistent over time. One might worry that errors in measuring fuel consumption by state could 

appear in both VMT data (in those states where the VMT estimate is based on fuel consumption) 

and in fuel efficiency. This would bias OLS estimates, but not 2SLS and 3SLS, which are 

                                                 
32 VMT estimates in other data sets have problems as well. For example, the 1990 Nationwide Personal 
Transportation Survey (NPTS) changed its sampling method in a manner that exaggerated the measured 1983-1990 
growth in VMT. Lave (1996) compares three sources in terms of national VMT growth rates, finding that the 
FHWA data set that we use (at the national level) agrees well with the other sources. For more recent years, it is 
generally believed that the FHWA methodology has improved. 
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specifically designed to eliminate asymptotic bias resulting from correlated errors in the 

dependent variables.33 

Second, our estimates, like those of most previous studies, rely on the theoretical 

restriction that people react to changes in cost per mile in the same way whether those changes 

arise from variations in fuel prices or in fuel efficiency. This restriction is critical to most studies 

because most data sets contain more variation in fuel prices than in fuel efficiency. 

Unfortunately, we are unable to confirm the restriction with our data and model. 

Using the simplified specification of Table 7 as a starting point, we entered the two 

components of log fuel cost per mile, pm = pf + fint, separately each time pm appears in our 

equations. Summary results are shown in Appendix C. A statistical test easily rejects equality of 

relevant coefficients. The coefficient on the non-interacted variable fint is small and statistically 

insignificant, while that on pf retains about the same value as that on pm in the restricted model. 

This result is consistent with the observation that variations in fuel prices are mainly what 

identify the rebound effect.  

Thus in the absence of theory we cannot prove that there is any rebound effect defined as 

a reaction to exogenous changes in fuel efficiency. However, the model with pf and fint entered 

separately does not perform very well. In the usage equation, the interactions of fint with inc and 

Urban become unstable with respect to inclusion or exclusion of other variables, making us think 

the equation is overfitting. With OLS, several coefficients of the usage equation, including that 

of fint, are implausible and erratic, and the equation portrays an extremely high value of 

autocorrelation and a low value for lagged vma. It appears that the time-series properties of the 

usage equation are poorly identified when pf and fint are allowed to have separate effects. Thus 

we conclude that the best estimate of the rebound effect is obtained by imposing the theoretical 

constraint that equates the effects of fuel price and fuel intensity, and that our data are unable to 

test this constraint satisfactorily. 

A third caveat is that the estimated role of fuel price in determining fuel efficiency is 

quite sensitive to details of how the cafe variable is defined. The prediction equation for desired 

fuel intensity, shown in Appendix B, is not very robust to attempts to add variables such as 

                                                 
33 Furthermore, we measure fuel intensity as fuel consumption divided by VMT, causing a cancellation of a common 
error in both. Thus for states that estimate VMT from aggregate fuel consumption, measurement error in fuel 
consumption would appear in our VMT variable but not in our fuel intensity variable, which instead would be 
determined by the independent estimate of fleet fuel efficiency used in those states. 
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lagged values of variables already included – probably because it relies on data for only a short 

time period, 1966-78. When we tried this, the time pattern exhibited by the cafe variable was 

quite different, and its influence in the structural model for fuel efficiency diminished to 

statistical insignificance, as did that of fuel price. However, we believe that this richer 

specification is unreliable because it over-fits the data: coefficients on a variable and its lag are in 

several instances large and opposite in sign, and the predicted desired fuel intensity show 

implausible oscillations over time. Therefore, we believe our base specification is the most 

suitable one given the short time period over which we can observe pre-CAFE behavior. 

 

5. Conclusion 

 Our study supports many earlier findings that the long-run rebound effect, i.e. the 

elasticity by which changes in fuel efficiency affect the amount of driving, was 20-25% in the 

U.S. over the last third of the 20th century. What is new is evidence that the rebound effect 

diminishes with income, and possibly increases with the fuel cost of driving. Since incomes have 

risen and real fuel costs have fallen, the rebound effect has declined considerably over time. For 

example, our results suggest it was less than half as large in the years 1997-2001 than over the 

entire sample. The rebound effect is likely to diminish still further as rising incomes reduce the 

significance of fuel costs in decisions about travel, although this may be offset to some extent by 

increases in fuel prices. 

 This result is relevant to policy. For example, the recent debate over whether to 

strengthen fuel-efficiency standards has emphasized the potential adverse effects on traffic 

congestion (e.g. Portney et al., 2003).  If the rebound effect has become smaller over time, these 

adverse effects will be smaller than has been thought. More generally, quantity standards are 

relatively more attractive compared to fuel taxes if the secondary effects of the standards on 

other consumer decisions are small. Put differently, if most of the elasticity of fuel consumption 

with respect to price reflects changes in the fuel efficiency of vehicles, as our results imply, then 

it is easier to design standards whose effects on fuel consumption and driving are similar to those 

of taxes. Their effects on fuel tax revenues, of course, are still different. 

 Our model as estimated can be used to forecast the dynamic adjustment path resulting 

from specific policies. For example, in 2004 California adopted regulations, under legislation 

mandating reduction of greenhouse gases, that impose fuel-efficiency mandates to be phased in 
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over the period 2009-2016. Because our model has a dynamic component, it could predict the 

year-by-year response to such a policy while taking into account projected changes in income 

and fuel prices — although the reliability of doing so diminishes if projected values lie outside 

the ranges observed in our data. 

 In urbanized areas, traffic congestion is an endogenous part of the system explaining 

reactions to changes in fuel efficiency. Presumably, any increased congestion would curtail the 

increased travel predicted by our model. To say how much, we would need a model of 

congestion formation along with a model explaining how it affects the demand for travel. Our 

model makes a start on this by including as variables urbanization and population relative to road 

supply, but a more exact link to congestion would be a desirable addition. 

 The degree to which the CAFE regulations have affected fleet fuel efficiency remains 

uncertain. It probably is bracketed by the results using our two versions of the regulatory variable 

named cafe—i.e. the results in Tables 4 and in Appendix Table B2. The question of CAFE’s 

effects remains an interesting area for future research, and we believe our approach offers a 

better chance of resolving it than previous attempts. To make further progress probably requires 

estimating models that disaggregate the passenger-vehicle fleet into the two categories, cars and 

light trucks, that are regulated differently under CAFE. 
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Appendix A: Control Variables and Data Sources 

Control Variables in (4): 

XM: Real personal income per capita at 1987 prices, in log form and normalized by subtracting 

the sample mean (inc);34 number of adults divided by public road mileage (logarithm: 

adults/road-mile) as a rough measure of potential congestion; ratio of total population to 

adults (logarithm: pop/adult) as a measure of family size; fraction of state’s population 

living in metropolitan statistical areas, normalized by subtracting its mean in the sample 

(Urban); fraction of the state’s population living in metropolitan statistical areas with a 

heavy-rail transit system (Railpop); a dummy variable to represent gasoline supply 

disruptions in 1974 and 1979 (D7479); and a time trend measured in years since 1966 

(Trend), intended to capture changes in technology and consumer preferences that we are 

unable to specify quantitatively.35 XM also includes two interaction variables: pm⋅inc and 

pm⋅Urban. 

XV: This set of variables includes inc, adults/road-mile, and Trend, already defined in XM. In 

addition there are two other variables: the national interest rate for auto loans (logarithm: 

interest); and the ratio of licensed drivers to adults (logarithm: licences/adult). 

XE: These variables include six of the variables in XM, namely inc, adults/road-mile, pop/adult, 

Urban, Railpop, and D7479. In addition we allow for the possibility of three distinct time 

trends in fuel efficiency: one before the OPEC embargo (1966-1973), another between the 

embargo and the Iranian revolution (1974-1979), and a third after the Iranian revolution 

(1980-2001). The rationale is that these events changed people’s perception of long-term 

prospects for oil supplies and therefore may have affected research and development efforts 

related to fuel efficiency. On the assumption that changes in technology cannot happen 

immediately, these variables (Trend66-73, Trend74-79, Trend80+) are specified in such a 

way that there is a break in the slope of the trend line but not a sudden “jump” from one 

                                                 
34 We also tried using disposable income, which excludes taxes, to see if it changed the strong influence that we find 
for income on the rebound effect.  The results are barely distinguishable from those presented here. 
35 We experimented with replacing these trends by three technology variables: vehicle volume, engine horsepower, 
and top speed (each in the form a fractional change in that measure since 1975, the earliest year for which we have 
the measure, and zero prior to 1975) plus a trend variable Techtrend equal to min{(year-1975), 0} in order to capture 
the effects of any earlier changes (assumed linear) in these variables. This approach did not improve the estimation.  
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regime to another. Specifically, Trend66-73 = Min(Trend,7); Trend74-79 = Max[0, 

Min[(Trend-7),6]}; and Trend80+ = Trend -Trend66-73 - Trend74-79. 

 

Data Sources: 

Adult population 
Definition: midyear population estimate, 18 years and over 
U.S. Census Bureau: http://eire.census.gov/popest/archives/1990.php and 
http://eire.census.gov/popest/data/states/ST-EST2002-ASRO-02.php 
(accessed 12/03/2004). Corrected as described in text. 

 
Corporate Average Fuel Economy Standard (Miles Per Gallon) 

National Highway Traffic Safety Administration (NHTSA), CAFE  
Automotive Fuel Economy Program, Annual update 2001, Table I-1. 
http://www.nhtsa.dot.gov/cars/rules/cafe/FuelEconUpdates/2001/Index.html. Passenger car 
and light truck standard are averaged in each year using nationwide VMT as weights (see 
VMT source). 

 
Consumer price index – all urban consumers 

Bureau of Labor Statistics (BLS), CPI (1982-84=100). http://www.bls.gov/cpi. Note: all 
monetary variables (gas tax, new passenger vehicle price index, price of gasoline, personal 
income) are put in real 1987 dollars by first deflating by this CPI and then multiplying by the 
CPI in year 1987. The purpose of using 1987 is for ease in replicating Haughton and Sarkar 
(1996). 

 
Highway Use of Gasoline (millions of gallons per year) 

1966-1995: FHWA, Highway Statistics Summary to 1995, Table MF-226 
1996-2001: FHWA, Highway Statistics, annual editions, Table MF-21 

 
Income per capita ($/year, 1987 dollars) 

Primary measure: Personal income divided by midyear population 
Personal income is from Bureau of Economic Analysis (BEA): http://www.bea.doc.gov. 
Alternative measures: 
(1) Disposable income per capita: Available from same web site as above, starting 1969; for 
1966-68 we interpolated by assuming it bore the same ratio to per capita personal income as 
existed in the same state for 1969-78. 
(2) Gross state product per capita: Available starting 1977; for 1966-1976 we interpolated by 
assuming it bore the same ratio to per capita personal income as existed in the same state for 
1977-87. 

 
Interest rate: national average interest rate for auto loans (%) 

Definition: average of rates for new-car loans at auto finance companies and at commercial 
banks. 
Source: Federal Reserve System, Economic Research and Data, Federal Reserve Statistical 
Release G.19, “Consumer Credit”: 
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http://www.federalreserve.gov/releases/g19/hist/cc_hist_tc.html. Available starting 1971 for 
auto finance companies, 1972 for commercial banks. For earlier years in each series, we use 
the predicted values from a regression explaining that rate using a constant and Moody's 
AAA corporate bond interest rate, based on years 1971-2001 (finance companies) or 1972-
2001 (commercial banks). 

 
New Car Price Index: U.S. passenger vehicles, city average, not seasonally adjusted (1987=100) 

Source: Bureau of Labor Statistics web site. 
Note: Original index has 1982-84=100. 
 

Number of vehicles: Number of automobiles and light trucks registered 
1966-1995: FHWA, Highway Statistics Summary to 1995, Table MV-201 
1996-2001: FHWA, Highway Statistics, annual editions, Table MV-1 
Note: “Light trucks” include personal passenger vans, passenger minivans, utility-type 
vehicles, pickups, panel trucks, and delivery vans. 

 
Price of gasoline (cents per gallon, 1987 dollars) 

Data Set A: U.S. Department of Energy (USDOE 1977), Table B-1, pp. 93-94 (contains 
1960-1977) 
Data Set B: Energy Information Administration, State Energy Data 2000: Price and 
Expenditure Data, Table 5 (contains 1970-2000) 
2001: Energy Information Administration, Petroleum Marketing Annual, Table A1. 
Note: We use Data Set B for 1970-2000, and for the earlier years we use predicted values 
from a regression explaining Set B values for overlapping years (1970-1977) based on a 
linear function of Set A values. 
 

Public road mileage: Total length of roads in state (miles) 
1966-1979: FHWA, Highway Statistics, annual editions, Table M-1 
1980-1995: FHWA, Highway Statistics Summary to 1995, Table HM-220 
1996-2001: FHWA, Highway Statistics, annual editions, Table HM-20 
 

Rail Transit Availability Index 
Definition:  Fraction of the state’s population living in metropolitan statistical areas with a 

subway or heavy rail transit system. 
Source for existence of rail by metro area: American Public Transportation Association 

(APTA). http://www.apta.com 
Source for population by Metropolitan Statistical Areas: Statistical Abstract of the United 

States, section on “Metropolitan Statistics”, various years. 
Note: Data are missing for years 1969, 1971, 1974, 1979, 1981, 1982, 1989; for those years 

we interpolate between the nearest available years. 
 

Number of Licensed Drivers 
1966-1995: FHWA, Highway Statistics Summary to 1995, Table DL-201 
1996-2001: FHWA, Highway Statistics, annual editions, Table DL-1C 
Some outliers in this series were replaced by values given by a fitted polynomial of degree 3. 
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Urban Road Mileage: Total municipal road distance (miles) 

1966-1979: FHWA, Highway Statistics, annual editions, Table M-1 
1980-1995: FHWA, Highway Statistics Summary to 1995, Table HM-220 
1996-2001: FHWA, Highway Statistics, annual editions, Table HM-20 

 
Urbanization: Share of total state population living in Metropolitan Statistical Areas (MSAs), 

with MSA boundaries based on December 2003 definitions. Available starting 1969; for 
earlier years, extrapolated from 1969-79 values assuming constant annual percentage growth 
rate. Source: Bureau of Economic Analysis, Regional Economic Accounts. 
http://www.bea.doc.gov/bea/regional/reis 

 
Vehicle Miles Traveled (millions) 

1966-1979: FHWA, Highway Statistics, annual editions, Table VM-2 
1980-1995: FHWA, Highway Statistics Summary to 1885, Table VM-202 
1996-2001: FHWA, Highway Statistics, annual editions, Table VM-2 
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Appendix B: Variable Measuring Strength of CAFE Regulation 

Base Version 

 We followed the following steps to create the variable cafe used in our statistical 

analysis. 

 1. We first estimate the reduced-form equation explaining fuel intensity—i.e., the 

empirical counterpart of the third of equation set (1)—on data only from 1966-1977, with no 

regulatory variable included (since there was no regulation then). This equation should in 

principle include all exogenous variables from all three models (including PV for the V equation); 

we simplified it by dropping the variable Railpop, which seemed to have little effect in this short 

time series. Like our other equations, it also includes one lag of the dependent variable, and 

allows for fixed effects and autocorrelated errors. It does not include other endogenous variables, 

either current or lagged; the reason is that, unlike in an instrumental variables regression, our 

objective is to estimate a predictive model for what fuel intensity would have been in the absence 

of CAFE regulation and therefore we cannot use information about what actually happened to 

the endogenous variables. In theory, this equation could include any number of lagged values of 

independent variables, because they would be present in a complete solution of system (1) for the 

time path of fint; however on this very short time series it is impractical to estimate so many 

parameters, especially of variables that are highly correlated as current and lagged values are 

likely to be. For the same reason of parsimony, we included only a single time trend in this 

predictive equation. 

 We denote this equation by: 

( ) ( ), , 1
fint . fintfR fR fR

it iti t i t
X uα β

−
= + +  (B.1) 

where i designates a state, superscript R indicates the reduced form, and XfR denotes the set of all 

exogenous variables used, including prices, as described above. The results of this estimation are 

shown in the first column of Table B1. The statistically significant coefficients are those of 

(fint)t-1, D7479, and pv. The price of fuel is not statistically significant (t-statistic -1.02) but has 

the reasonable value of -0.021. 

 

 2. The coefficient αfR of the lagged dependent variable is interpreted as arising from the 

following partial adjustment model: 
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{ } ittitititi ufintfintfintfint +−⋅+= −− 1,
*
,1,, )()()()( γ  (B.2) 

where *
,)( tifint  denotes a long-run desired value for the logarithm of fuel intensity. That is, users 

basing decisions in year t desire to shift the vehicle stock toward one with fuel efficiency *
,)( tifint  

but they can do so only part way by changing a portion γ of the stock in that year. Thus it is 

natural to interpret *
,)( tifint  as the target fuel efficiency for new car purchases and γ as the 

fraction of the fleet that turns over each year. It is easy to see that (B.2) is the same as (B.1) if we 

choose γ=1-αf and  

( )*,
fint

1

fR fR
it
fRi t

Xβ
α

=
−

. (B.3) 

This value is computed for each state and each year t. 

 

 3. From the estimated values of ( )*,fint ti , we compute the US average desired fuel 

intensity, averaged the same way as vehicles are averaged under CAFE regulations: namely, 

( )
∑

∑

i
it

i
itit

t M

fintM
FintUS

*

*
)(exp

)(  (B.4) 

where Mit is aggregate VMT for state i in year t. 

 

 4. Finally, we assume CAFE is binding whenever the desired efficiency 

( )** /1 tt FintUSE ≡  is less than the minimum mandated efficiency, tE . The latter is computed as a 

weighted average of the CAFE standards for light trucks and cars, the weights being current 

nationwide light truck and car VMT, reduced by 16%, which is an estimate of the difference 

between fuel efficiency achieved in real driving and that achieved on the tests used to enforce the 

CAFE standard (Harrington, 2003). A measure of the strength of CAFE regulation is then  

*max ,  1t
E

t

ER
E

 
=  

 
 

or its logarithm, 

( ){ }0 ,  max *
tt eecafe −≡  (B.5) 

where )ln( tt Ee =  and )ln( **
tt Ee = . Note this measure is nationwide, not state-specific. 
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 Variable   Coefficient   Std. Error   Coefficient  Std. Error  
 fint(t-1)  0.6523 0.0434 0.8667 0.0148
 pf  -0.0253 0.0204 -0.0231 0.0087

 Inc  0.0081 0.0291 -0.0152 0.0173
 adults/road-m  0.0377 0.0268 -0.0002 0.0075
 pop/adult  -0.1848 0.1626 0.0720 0.0703
 Urban  -0.2465 0.2294 -0.1265 0.0662
 D7479  -0.0212 0.0060 -0.0013 0.0046
Trend -0.0123 0.0027

 pv  -0.2251 0.0797 0.0844 0.0246
 Interest  0.0294 0.0301 -0.0130 0.0077
 licences/adult  0.0294 0.0255 0.0537 0.0178
 cafe_prelim -0.0545 0.0150

 constant  -0.9340 0.2124 -0.4356 0.0704
 Rho  -0.1374 0.0614 -0.1585 0.0281

 No. of observations  
 Adjusted R-squared  
 S.E. of regression  
 Sum squared resid  
 Durbin-Watson stat  

Note: 50 constants for individual states are not shown.

1.9703

Table B1. Fuel Intensity Equation:

1734
0.8969
0.0253
0.2855
2.0036

Reduced Form for Estimating Desired Fuel Efficiency

1734
0.9582

2.7914

Base Version
(1966-1977)

Alternate Version
(1966-2001)

0.0409

 
 

 

Alternate Version 

 For our alternate version of variable cafe, we use the variable just described, with one 

modification, as a preliminary variable called cafe_prelim. The modification is that we omitted 

the time trend (Trend in Table B1), which we found plays a dominant role in producing the 

generally upward slope of the desired fuel-efficiency variable shown in Figure 1 of the text. 

(Note that the negative sign on the coefficient of Trend in Table B1 corresponds to a negative 

effect of time on desired fuel intensity, hence a positive effect on desired fuel efficiency.) We 

interpret the effect of Trend as the result of technological changes making fuel efficiency easier 
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to achieve; but there is some risk in projecting such a trend, estimated on 1966-1977 data, 

forward to 2001. We wanted to see if, instead of relying on Trend, we could actually estimate the 

full reduced-form model on the longer time period. 

 We accomplish this by estimating the same reduced-form model as before, but with three 

changes: we used the full data set, deleted Trend, and added cafe_prelim. The results are shown 

in the second column of Table B1. The precision of estimates is much better, and in certain ways 

the equation is more satisfactory: both price of fuel (pf) and CAFE regulation (cafe_prelim) have 

statistically significant effects in the expected direction, and autocorrelation is a little smaller. 

Note that the coefficient of the price of new vehicles (pv) now has the opposite sign; apparently 

this variable, which trended downward throughout the period, now takes on the job of explaining 

long-term trends since the Trend variable was removed. Since we have no prior belief about the 

sign of this coefficient, we cannot say which result is more plausible. (We also tried including 

three trend variables in this equation, just like in our structure model of fuel intensity; in that case 

cafe_prelim was also fit with a (single) trend for consistency. But the results showed clear signs 

of overfitting, with predicted fuel intensity displaying implausible oscillations.) 

 We then calculate our alternate version of desired fuel efficiency with these estimated 

coefficients, using Step 2 above except setting the values of variable cafe_prelim to zero (in 

order to represent what fuel intensity consumers and manufacturers would have chosen in the 

absence of pressure from CAFE regulations). The rest of the calculation proceeds as in Steps 3 

and 4 above. 

 Table B2 compares selected results of estimating our structural model with the two 

versions of the cafe variable. (The first two columns repeat 3SLS results from Tables 4 and 5). 

The main difference is that the coefficient of vma+pf, which determines how fuel price affects 

desired fuel efficiency, is much larger and more precisely estimated using the alternate version. 

The coefficient of cafe is also larger, but not as precisely estimated. The fuel intensity equation 

fits a little better using the alternate version of cafe, according to the adjusted R-squared value. 

Despite these improvements, we remain concerned that with our alternate calculation procedure, 

our estimates of desired fuel efficiency are not robust to adding trend variables in the reduced-

form equation itself. In the end, we can offer no judgment about which version of cafe better 

depicts the tightness of regulations as perceived by market participants. 
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Variable Coefficient Stndrd. Error Coefficient Stndrd. Error
Vehicle-Miles Traveled Equation (Table 2)

vma(t-1) 0.7907 0.0128 0.8081 0.0127
pm -0.0452 0.0048 -0.0445 0.0048
pm^2 -0.0104 0.0068 -0.0074 0.0069
pm*inc 0.0582 0.0145 0.0560 0.0148
pm*Urban 0.0255 0.0106 0.0289 0.0108
inc 0.1111 0.0141 0.1048 0.0142
Urban -0.0548 0.0202 -0.0531 0.0203

Adjusted R-squared

Fuel Intensity Equation (Table 4)
fint(t-1) 0.8138 0.0137 0.8075 0.0154
vma+pf -0.0460 0.0069 -0.0813 0.0099
cafe -0.1011 0.0115 -0.1368 0.0219

inc 0.0025 0.0163 0.0267 0.0165
pop/adult -0.0111 0.0691 0.1061 0.0699
Urban -0.1500 0.0522 -0.1600 0.0537
D7479 -0.0105 0.0045 -0.0015 0.0044
Trend66-73 0.0006 0.0010 0.0006 0.0010
Trend74-79 -0.0024 0.0010 -0.0012 0.0011
Trend80+ -0.0037 0.0004 -0.0029 0.0004
constant -0.1137 0.0809 0.1520 0.0974
rho -0.1353 0.0236 -0.1121 0.0245
Adjusted R-squared

Rebound Effect and Other Price Elasticities

Elasticity Short Run Long Run Short Run Long Run
Elasticity of VMT with respect to
fuel cost per mile: (a)
   At sample average -0.0452 -0.2221 -0.0446 -0.2398

(0.0048) (0.0238) (0.0048) (0.0262)

   At US 1997-2001 avg. (b) -0.0216 -0.1066 -0.0242 -0.1308
(0.0090) (0.0433) (0.0091) (0.0474)

   At US 1997-2001 avg. ex- -0.0311 -0.1531 -0.0310 -0.1671
    cept pf= $1.93 nominal (c) (0.0060) (0.0299) (0.0060) (0.0329)
Elasticity of fuel intensity 
with respect to fuel price:
   At sample average -0.0440 -0.2047 -0.0780 -0.3595

(0.0067) (0.0338) (0.0097) (0.0444)
Elasticity of fuel consumption
with respect to fuel price:
   At sample average -0.0873 -0.3813 -0.1191 -0.5131

   At US 1997-2001 avg. (b) -0.0657 -0.3097 -0.1018 -0.4697

   At US 1997-2001 avg. ex- -0.0744 -0.3380 -0.1075 -0.4837
   cept pf= $1.93 nominal (c)
Notes: See Tables 2-5. Not all coefficients are listed here.

0.9604 0.9615

0.9801 0.9801

Using Base Version of cafe Using Alternate Version of cafe

Table B2. Comparison of Selected Structural Estimates: 3SLS
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Appendix C: Results of Model with Fuel Price and Fuel Intensity Entered Separately 

 

Variable Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

vma(t-1) 0.8108 0.0142 0.8144 0.0174 0.0428 0.0184

pf -0.0560 0.0053 -0.0532 0.0057 -0.0856 0.0067
pf*(inc) 0.0968 0.0225 0.1374 0.0314 0.1679 0.0323
pf*(Urban) 0.0487 0.0262 0.0307 0.0357 -0.0203 0.0331

fint 0.0081 0.0142 -0.0006 0.0162 -0.5847 0.0151
fint*(inc) 0.0548 0.0507 0.0251 0.0614 0.3492 0.0565
fint*(Urban) -0.0799 0.0554 -0.0151 0.0700 -0.1235 0.0575

inc 0.0826 0.0159 0.0886 0.0177 0.3660 0.0239
D7479 -0.0465 0.0037 -0.0463 0.0039 -0.0136 0.0020
Trend 0.0009 0.0004 0.0008 0.0005 0.0000 0.0007
rho -0.0973 0.0230 -0.0596 0.0289 0.8128 0.0139

fint(t-1) 0.7962 0.0146 0.8236 0.0156 0.7869 0.0163
pf+vma -0.0406 0.0073 -0.0374 0.0076 -0.0940 0.0075
cafe -0.0916 0.0119 -0.0672 0.0141 -0.1025 0.0144

inc 0.0094 0.0166 0.0130 0.0170 0.0076 0.0174
D7479 -0.0096 0.0045 -0.0069 0.0047 -0.0057 0.0046
Trend74-79 -0.0022 0.0011 -0.0030 0.0012 0.0009 0.0012
Trend80+ -0.0039 0.0005 -0.0031 0.0005 -0.0046 0.0005
rho -0.1379 0.0236 -0.1408 0.0287 -0.0955 0.0293

Vehicle-Miles Traveled Equation

Fuel Intensity Equation

Table C1. Model with Fuel Price and Fuel Intensity Entered Separately: Selected Results

Estimated Using 3SLS Estimated Using 2SLS Estimated Using OLS

 


