

HHS Public Access

Author manuscript *Obstet Gynecol.* Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:

Obstet Gynecol. 2016 September ; 128(3): 447-455. doi:10.1097/AOG.00000000001556.

Is the United States Maternal Mortality Rate Increasing? Disentangling trends from measurement issues Short title: U.S. Maternal Mortality Trends

Marian F. MacDorman, Ph.D.¹, Eugene Declercq, Ph.D.², Howard Cabral, Ph.D.³, and Christine Morton, Ph.D.⁴

Marian F. MacDorman: mmacdorm@umd.edu

¹Research Professor, Maryland Population Research Center, 2015 Morrill Hall, University of Maryland, College Park, MD 20742, Phone: 301-565-3811

²Professor and Assistant Dean for Doctoral Education, Department of Community Health Sciences, Boston University School of Public Health, Boston, MA

³Professor of Biostatistics, Boston University School of Public Health, Boston, MA

⁴Research Sociologist, California Maternal Quality Care Collaborative, Stanford University Medical School, Palo Alto CA 94305

Abstract

Background—A pregnancy question was added to the U.S. standard death certificate in 2003 to improve ascertainment of maternal deaths. The delayed adoption of this question among states led to data incompatibilities, and impeded accurate trend analysis. Our objectives were to develop methods for trend analysis, and to provide an overview of U.S. maternal mortality trends from 2000–2014.

Methods—This observational study analyzed vital statistics maternal mortality data from all U.S. states in relation to the format and year-of-adoption of the pregnancy question. Correction factors were developed to adjust data from before the standard pregnancy question was adopted, to promote accurate trend analysis. Joinpoint regression was used to analyze trends for groups of states with similar pregnancy questions.

Results—The estimated maternal mortality rate (per 100,000 live births) for 48 states and Washington D.C. (excluding California and Texas, analyzed separately) increased by 26.6%, from 18.8 in 2000 to 23.8 in 2014. California showed a declining trend, while Texas had a sudden increase in 2011–2012. Analysis of the measurement change suggests that U.S. rates in the early 2000s were higher than previously reported.

Discussion—Despite the United Nations Millennium Development Goal for a 75% reduction in maternal mortality by 2015, the estimated maternal mortality rate for 48 states and Washington D.C. increased from 2000–2014, while the international trend was in the opposite direction. There is a need to redouble efforts to prevent maternal deaths and improve maternity care for the 4 million U.S. women giving birth each year.

Correspondence to: Marian F. MacDorman, mmacdorm@umd.edu.

Introduction

Maternal mortality is an important indicator of the quality of health care both nationally and internationally (1-3). The death of a mother during pregnancy, childbirth or post-partum is one of the greatest tragedies that can occur within a family, with wide-ranging consequences for the index child, other children, spouses, other family members, and the larger society (1-5).

The Centers for Disease Control and Prevention's National Center for Health Statistics (NCHS) is the source of official United States' maternal mortality statistics used for both sub-national and international comparisons (6). Studies based on data from the 1980s and 1990s identified significant underreporting of maternal deaths in the National Vital Statistics System (7–8). To improve ascertainment, a pregnancy question was added to the 2003 revision of the U.S. standard death certificate. The question has several checkboxes to ascertain whether female decedents were: Not pregnant within past year; pregnant at time of death; not pregnant, but pregnant within 42 days of death; not pregnant, but pregnant 43 days to 1 year before death; or unknown if pregnant within the past year (9). The use of this pregnancy question has improved ascertainment of maternal deaths, and led to increases in reported maternal mortality rates (6).

However, there were delays in states' adoption of the revised death certificate, and thus the new pregnancy question (6, 10, 11). In addition, some states had pregnancy questions that were inconsistent with the U.S. standard (6). This created a situation where, in any given data year, some states were using the U.S. standard question, others were using questions incompatible with the U.S. standard, and still others had no pregnancy question on their death certificates (6, 10, 11).

Due in part to the difficulties in disentangling these effects, the United States has not published an official maternal mortality rate since 2007 (11). This has led to a deficit of information both nationally and internationally, at a time when greater attention has been focused on maternal mortality than ever before (1–5, 12–13). For example, United Nations' Millennium Development Goal 5a was to reduce the maternal mortality rate by 75% between 1990 and 2015 (12).

A supplemental data system, the Pregnancy Mortality Surveillance System, collects data on pregnancy-related deaths (within 1 year of pregnancy), and has found recent increases in these deaths (14–15). However, since this system is based in large part on official vital statistics data (together with supplementary reports), these data could also have been influenced by the improved ascertainment of maternal deaths in the National Vital Statistics System. Thus, there is currently no clear picture of maternal mortality trends in the U.S. The aims of this study were to: 1) develop and test methods for trend analysis of vital statistics maternal mortality data from 2000–2014, taking into account state revision dates and different question formats; and 2) provide an overview of trends in U.S. maternal mortality rates from 2000–2014.

Methods

The World Health Organization defines maternal death as: "The death of a woman while pregnant or within 42 days of termination of pregnancy, irrespective of the duration and the site of the pregnancy, from any cause related to or aggravated by the pregnancy or its management, but not from accidental or incidental causes" (16). This is the definition used for international maternal mortality comparisons. The WHO also provides a separate definition for late maternal deaths: "The death of a woman from direct or indirect obstetric causes more than 42 days but less than one year after termination of pregnancy" (16).

United States maternal mortality data used for national and international comparisons are based on information reported on death certificates filed in state vital statistics offices, and subsequently compiled into national data through the National Vital Statistics System (10–11). Physicians, medical examiners or coroners are responsible for completing the medical portion of the death certificate, including the cause of death. From 1999 to the present, cause-of-death data in the United States have been coded according to the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) (10–11). Maternal deaths are denoted by ICD-10 codes A34, 000–095, 098–099, while late maternal deaths are denoted by ICD-10 codes O96–O97 (6).

Maternal mortality data used in this study were derived from the detailed mortality data files publically available from NCHS, and also available through CDC-WONDER (17–18). Maternal mortality rates were computed per 100,000 live births. Joinpoint regression analysis was used to model trends over time (19). This approach is also commonly referred to as piecewise or segmented regression and has been implemented to test for differences in adjacent time trends using permutation tests and assessing overall model fit using the Bayesian Information Criterion (19). Because the study was based on de-identified, aggregated data from U.S. government public-use data sets, the study was exempt from requiring institutional review board approval.

State maternal mortality reporting

The timing of states adopting the revised death certificate, including the pregnancy question, is shown in table 1. For the purposes of this paper, revised refers to states that have adopted the 2003 revision of the U.S. standard death certificate, while unrevised refers to states that have not yet adopted the 2003 revision and thus are using the older (1989) version of the death certificate. Before revision, 18 states had a pregnancy question on their death certificate; however for only 3 of these states (Alabama, Maryland, and New Mexico) did the question collect data on pregnancy within the 42-day standard timeframe. The other 15 states had pregnancy questions with time frames ranging from 3 to 18 months after pregnancy. Thirty-two states and Washington D.C. did not have a pregnancy question on their unrevised death certificate.

Only 4 states (California, Idaho, Montana, and New York) revised their death certificates in 2003, the year that the death certificate revision was intended to take place. A few states continued to revise each year, until 44 states and Washington D.C. (all except Alabama, Colorado, Maryland, Massachusetts, Virginia and West Virginia) had revised by January 1,

2014 (Massachusetts and Virginia both revised late in 2014). All states that revised their death certificates now had a pregnancy question comparable with the U.S. standard, except for California, which adopted a pregnancy question asking only about pregnancies within the past year. Thus, as of January 1 2014, all states except California, Colorado, Massachusetts, Virginia, and West Virginia were supplying pregnancy data for the standard 42-day timeframe.

Development of correction factors

It would be preferable to analyze data individually for each state, however, maternal death is a rare event, and the numbers of cases (396 U.S. deaths in 2000, and 856 in 2014) were not sufficient to support individual state analysis for all but the most populous states (California and Texas). Rather, states needed to be grouped by some mechanism to create groups large enough for analysis. However, states varied widely in revision dates and unrevised question formats. Therefore we developed a correction procedure to combine data from states with similar characteristics that revised their death certificates in different data years.

The correction factor was developed to adjust unrevised data to be comparable to revised data, and was computed for a group of 24 states and Washington D.C. that, before revision, did not have a pregnancy question (Analysis Group 1 - see Table 1).

	Sum of the number of maternal deaths in each state for two
Correction factor=	years following the revision date
Correction factor-	Sum of the number of maternal deaths in each state for the
	two years preceding the revision date

For states that revised in the middle of the year, data from their revision year was dropped, and data from the two following and two preceding years were used in the computation. Data for states that revised in 2014 were excluded from these computations, as these states did not yet have two years of data after the revision to contribute. This correction factor was multiplied by the number of unrevised deaths for each state prior to the revision to estimate the number of maternal deaths in the unrevised years. Adjusted numbers of deaths were then used to compute maternal mortality rates for the combined 24 states and Washington D.C.

This same methodology was used to develop a correction factor for a group of 14 states (including Texas, analyzed separately) that had a non-standard pregnancy question with a timeframe longer than the 42 day standard (Analysis Group 2 – see Table 1) prior to revision.

Unadjusted analysis

Analysis Groups 3 and 4 include 11 states whose data were analyzed as reported, without recourse to correction factors. Group 3 includes 8 states that had not revised as of late 2013 and either did not have a pregnancy question on their unrevised death certificate (Alaska, Colorado, Hawaii, North Carolina, Massachusetts, West Virginia, and Wisconsin) or had a pregnancy question with a longer timeframe (Virginia). Wisconsin revised in September 2013 and was excluded from the 2013 data point. Group 4 includes 3 states (Alabama,

Maryland and New Mexico) that had an unrevised pregnancy question asking about deaths during or within 42 days after pregnancy.

California analysis

California is the only state that revised their death certificate with a pregnancy question inconsistent with the U.S. standard. The California question only asks about pregnancies within the past year. In addition, there were changes over time in specific data provided by California to NCHS for deaths at <42 days, making use of this measure impracticable (6, 20). Thus, maternal and late maternal deaths were combined for the California trend analysis.

Computing estimated maternal mortality rates for 48 states and DC

Finally, we estimated maternal mortality rates for 48 states and D.C. from 2000–2014. California and Texas were excluded from this estimation: California because it does not provide comparable data, and Texas due to uncertainty regarding recent trends (see Results section).

First, we computed a weighted average of the slope of the regression lines from Analysis Groups 1–4. The slopes of the four regression lines were weighted by the total number of live births from 2000–2014 that were included in the maternal mortality rate computations. Then we computed a combined, reported 2014 maternal mortality rate for states that had a pregnancy question comparable to the US standard in 2014. We applied the average slope to this rate to back-estimate maternal mortality rates back to 2000. This exercise yielded estimated maternal mortality rates for the 48 states and DC for the period 2000–2014.

Results

Simply totaling the raw, unadjusted data from all states regardless of whether or not they revised their death certificates results in a reported U.S. maternal mortality rate that more than doubled from 9.8 maternal deaths per 100,000 live births in 2000 to 21.5 in 2014 (17). However, the adjusted maternal mortality rate increased more slowly for a group of 24 states and Washington D.C. (Analysis Group 1 – see Table 1) that only included a pregnancy question after they revised their death certificates (Figure 1). The correction factor for Group 1 states was 1.932 (483 maternal deaths in the two years after revision/250 maternal deaths in the two years prior to revision). The modeled adjusted maternal mortality rate for Group 1 states, which adjusts for presumed undercounting in the years prior to revision, increased from 18.2 in 2000 to 22.8 in 2014. The slope of the regression line was 0.33 (95% CI 0.07, 0.58), and was based on 3,108 maternal deaths and 19,328,481 live births from 2000–2014.

Group 2 included states that had a non-standard pregnancy question prior to revision, and revised to the U.S. standard. The correction factor for these states was 2.067 (676/327 maternal deaths). Among these states, the adjusted maternal mortality rate was higher than reported in 2000 (18.4) and rose to 24.5 in 2014. The slope of the regression line was 0.44 (95% CI 0.05–0.82) (based on 3,098 maternal deaths and 18,136,263 births) (Figure 2).

Data for Analysis Groups 3 (8 states) and 4 (3 states) are analyzed without adjustment and are shown in Figure 3. For Group 3, states that did not revise and did not have a comparable question pre-revision, the rates reported are uniformly lower than for other states and the modeled maternal mortality rate was 8.0 in 2000 and increased to 10.4 in 2013. The slope of the regression line was 0.19 (95% CI -0.02, 0.39) (638 maternal deaths and 6,804,191 live births). For Analysis Group 4, states that already had a comparable pregnancy question on their death certificate throughout the study period, the modeled maternal mortality rate rose from 14.0 in 2000 to 19.9 in 2014. The slope of the regression line was 0.42 (95% CI 0.09, 0.75), (425 maternal deaths and 2,453,198 live births).

California and Texas were analyzed separately as they had trends that were markedly different from other U.S. states, and sufficient numbers of maternal deaths for reliable trend analysis. Texas had an unrevised question about pregnancies in the past 12 months, and revised to the U.S. standard question in 2006. Adjusted maternal mortality rates for Texas show only a modest increase from 2000–2010, from a rate of 17.7 in 2000 to 18.6 in 2010. The slope of this regression line was 0.12 (95% CI –0.22, 0.46), (564 maternal deaths and 4,246,835 live births) (Figure 4). However, after 2010, the reported maternal mortality rate for Texas doubled within a two year period to levels not seen in other U.S. states. Joinpoint trend analysis was done separately for the 2000–2010 and the 2011–2014 periods as the trends for these two periods differed widely.

California data are shown in Figure 5 for maternal and late maternal deaths combined (those occurring within 1 year of pregnancy). The California rate was markedly lower in 2000–2002, before the pregnancy question was adopted, and the reported rate nearly doubled once the pregnancy question (asking about pregnancies <1 year) was introduced in 2003. As the 2000–2002 data were clearly not comparable, joinpoint regression analysis was done for the 2003–2014 data. The modeled maternal mortality rates decreased from 21.5 in 2003 to 15.1 in 2014. The slope of the line was -0.58 (95% CI -1.05, -0.11), or 0.58 unit of decrease in the combined maternal and late maternal mortality rate per year (based on 1,190 maternal deaths and 6,356,032 live births).

Finally, we provide estimated maternal mortality rates for 48 states and DC from 2000–2014 (Table 2). For the 48 states and D.C. (excluding California and Texas), the estimated maternal mortality rate in 2000 was 18.8, and the rate increased slowly to a rate of 23.8 in 2014, an increase of 26.6% (Table 2). The slope of the regression line was 0.36 (95% CI 0.05, 0.67), based on 7,269 reported maternal deaths and 46,722,133 live births from 2000–2014. Since the reported (unadjusted) maternal mortality rate for the 48 states and DC increased by 132.3% from 2000–2014 (from 9.9 to 23.0) (17), we estimate that 20.1% (26.6%/132.3%) of the observed increase in the maternal mortality rate from 2000–2014 was due to a real increase in maternal mortality, and 79.9% was due to improved ascertainment.

Sensitivity Analysis

Since the results of the modeling for Groups 1 and 2 could vary depending on the magnitude of the correction factors, we did a sensitivity analysis to assess the degree to which these factors might differ under differing conditions. For Groups 1 and 2 separately, we computed correction factors using 1 year, 2 year, and 3 year intervals in both the numerator and

denominator. Computing the 3-year correction factor involved dropping data for 1 state (Louisiana) that did not have 3 years of revised data to contribute. Within group 2, we computed correction factors separately for Texas and for all other states. We also computed separate correction factors for states with a pregnancy question with a timeframe of < 6 months, compared to states with a timeframe of 6 months or greater. Since all of the resulting values were within 6% of the correction factors used in the study, and since the use of the 3-year correction factor would have involved dropping data from Louisiana, the 2-year correction factors were retained in the final study.

Discussion

Despite the United Nations Millennium Development Goal for a 75% reduction in maternal mortality from 1990–2015 the reported (unadjusted) U.S. maternal mortality rate more than doubled from 2000–2014. As we've shown, most of the reported increase in maternal mortality rates from 2000–2014 was due to improved ascertainment of maternal deaths. However, combined data for 48 states and DC showed an increase in the estimated maternal mortality rate from 18.8 in 2000 to 23.8 in 2014 - a 26.6% increase. Notably, the smaller increase seen in the adjusted data appears to be a result of earlier estimates of the U.S. national rate being substantially underreported. Clearly at a time when WHO reports that 157 of 183 countries studied had decreases in maternal mortality between 2000 and 2013 (21), the U.S. maternal mortality rate is moving in the wrong direction. Among 31 Organization for Economic Cooperation and Development (OECD) countries reporting maternal mortality data, the U.S. would rank 30th, ahead of only Mexico (22).

California, however, showed a marked decline in maternal and late maternal mortality from 2003–2014. California has made concerted efforts to reduce maternal mortality, including initiating a statewide pregnancy-associated mortality review in 2006, and contracting with the California Maternal Quality Care Collaborative to investigate primary causes of maternal death. This collaborative developed and promulgated evidence-based tool kits to address two of the most common, preventable contributors to maternal death (obstetric hemorrhage and preeclampsia), and implemented quality improvement initiatives throughout the state (23–25). These efforts appear to have helped reduce maternal mortality in California (23).

The Texas data are puzzling in that they show a modest increase in maternal mortality from 2000–2010 (slope=0.12) followed by a doubling within a 2-year period in the reported maternal mortality rate. In 2006, Texas revised its death certificate, including the addition of the U.S. standard pregnancy question, and also implemented an electronic death certificate. However, the 2006 changes did not appreciably affect the maternal mortality trend after adjustment, and the doubling in the rate occurred in 2011–2012. Texas cause-of-death data, as with data for most states, are coded at NCHS, and this doubling in the rate was not found for other states. Communications with vital statistics personnel in Texas and at NCHS did not identify any data processing or coding changes that would account for this rapid increase. There were some changes in the provision of women's health services in Texas from 2011–2015, including the closing of several women's health clinics (26–27). Still, in the absence of war, natural disaster, or severe economic upheaval, the doubling of a mortality rate within a 2-year period in a state with almost 400,000 annual births seems

unlikely. A future paper will examine Texas data by race/ethnicity and detailed causes of death to better understand this unusual finding.

The larger correction factor for Group 2 than for Group 1 states is not surprising when examined in the context of NCHS coding rules. These rules code pregnancy data for states with a pregnancy question with a timeframe longer than the 42 day standard to *late* maternal death (O96–97) codes, which are by definition excluded from standard maternal mortality calculations (6). This decision is understandable as the more conservative approach, since the exact timing of death was unknown. However, it has caused significant disruption in trend analysis of maternal and late maternal mortality rates. This is because most maternal deaths within 1 year of pregnancy actually occur during or very soon after pregnancy. For example, in 2009 (about the mid-point in the adoption of the revised certificate) 64% of maternal deaths <1 year were coded to the late maternal (O96–O97) category for the 8 unrevised states that had a pregnancy question with a timeframe longer than the 42-day standard, compared to just 21% for the 30 revised states that had adopted the U.S. standard pregnancy question.

The strengths of the study include the use of vital statistics data that provide information on all births and deaths in the United States during the study period. The limitations of the study are also those of vital statistics, and include concerns about the accuracy of cause-ofdeath information provided by the physician, medical examiner or coroner (7, 28). The prompt nature of vital statistics registration also means that such registration may initially occur based on an interim cause of death, which, depending on the efficiency of state systems, may or may not be updated after cause-of-death investigations are completed (29). Evaluation of the accuracy of reporting of the pregnancy question is important as this information is used in conjunction with the reported causes of death to classify maternal deaths (28). However, the pregnancy data are currently not included on public-use data sets (17–18), so such evaluations are infeasible for non-NCHS researchers. During the time period under study, states have increasingly moved towards electronic death registration, and away from paper-based death certificates. NCHS has continued to provide training in causeof-death certification to state vital statistics personnel and has recently taken on a greater role in coding cause-of-death data. However these changes are unlikely to have substantially influenced maternal mortality reporting (20).

It is an international embarrassment that the United States, since 2007, has not been able to provide a national maternal mortality rate to international data repositories such as those run by the OECD (22). This inability reflects the chronic underfunding over the past two decades of state and national vital statistics systems. Indeed, it was primarily a lack of funds that led to delays (of more than a decade in many states) in the adoption of the 2003 revised birth and death certificates. And this delay created the complex data comparability problem addressed in this study. The lack of publication of U.S. maternal mortality data since 2007 has also meant that these data have received a lesser degree of scrutiny and quality control, when compared to published vital statistics measures such as infant mortality. For example, had NCHS and the Texas vital statistics office both been publishing annual maternal mortality rates, the unusual findings from Texas for 2011–2014 would certainly have been investigated much sooner and in greater detail. Accurate measurement of maternal mortality

is an essential first step in prevention efforts, as it can identify at-risk populations and measure the progress of prevention programs.

In conclusion, the maternal mortality rate for 48 states and Washington D.C. from 2000–2014 was higher than previously reported, is increasing, and places the U.S. far behind other industrialized nations. There is a need to redouble efforts to prevent maternal deaths and improve maternity care for the 4 million U.S. women giving birth each year.

Acknowledgments

We gratefully acknowledge support from the *Eunice Kennedy Shriver* National Center for Child Health and Human Development grant R24-HD041041, Maryland Population Research Center.

References

- 1. Amnesty International. Deadly delivery: The maternal health care crisis in the USA. Amnesty International Publications; London: 2010. Available at: http://www.amnestyusa.org/sites/default/files/pdfs/deadlydelivery.pdf [Accessed March 1, 2016]
- World Health Organization, UNICEF, UNFPA and the World Bank. [Accessed March 1, 2016] Trends in maternal mortality 1990 to 2008 – estimates developed by WHO, UNICEF, UNFPA, and the World Bank. 2010. Available at: http://www.who.int/reproductivehealth/publications/ monitoring/9789241500265/en/
- Hunt, P.; Bueno de Mesquita, J. Reducing maternal mortality the contribution of the right to the highest attainable standard of health. University of Essex Human Rights Centre; New York, New York: United Nations Population Fund; 2010.
- Lawson GW, Keirse MJNC. Reflections on the maternal mortality millennium goal. Birth. 2013; 40(2):96–102. [PubMed: 24635463]
- Hogan MC, Foreman KJ, Naghavi M, Ahn SY, et al. Maternal mortality for 181 countries, 1980–2008: A systematic analysis of progress towards Millennium Development Goal 5. Lancet. 2010; 375(9726):1609–23. [PubMed: 20382417]
- 6. Hoyert DL. Maternal mortality and related concepts. National Center for Health Statistics. Vital Health Stat. 2007; 3(33)
- MacKay AP, Berg CJ, Duran C, Chang J, Rosenberg H. An assessment of pregnancy-related mortality in the United States. Paediatr Perinat Epidemiol. 2005 May; 19(3):206–14. [PubMed: 15860079]
- Horon H, Cheng D. Enhanced surveillance for pregnancy-associated mortality Maryland, 1993– 1998. JAMA. 2001; 285(11):1455–9. [PubMed: 11255421]
- National Center for Health Statistics. Report of the Panel to Evaluate the US Standard Certificates. Hyattsville, MD: National Center for Health Statistics; 2000. Available from: http://www.cdc.gov/ nchs/data/dvs/panelreport_acc.pdf [Accessed March 1, 2016]
- Xu, J.; Murphy, SL.; Kochanek, KD.; Bastian, BA. National vital statistics reports. Vol. 54. Hyattsville, MD: National Center for Health Statistics; 2016. Deaths: Final data for 2013. Available from: http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf(and prior reports published annually) [Accessed March 1, 2016]
- Minino, AM.; Murphy, SL.; Xu, J.; Kochanek, KD. National vital statistics report. Vol. 59. National Center for Health Statistics; 2011. Deaths: Final data for 2008. Available at: http:// www.cdc.gov/nchs/data/nvsr/nvsr59/nvsr59_10.pdf [Accessed March 1, 2016]
- 12. United Nations. [Accessed March 1, 2016] Millennium Development Goals. Available at: http://www.un.org/millenniumgoals/
- Kassenbaum NJ, Bertozzi-Villa A, Coggershall MS, et al. Global regional, and national levels and causes of maternal mortality during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014; 384(9947):980–1004. [PubMed: 24797575]

- 14. Creanga AA, Berg CJ, Ko JY, Farr SL, Tong VT, Bruce C, Callaghan WM. Maternal mortality and morbidity in the United States: Where are we now? Journal of Women's Health. 2014; 23(1):3–9.
- Creanga AA, Berg CJ, Syverson C, Seed K, Bruce FC, Callaghan WM. Pregnancy-related mortality in the United States 2006–2010. Obstet Gynecol. 2015; 125(1):5–12. [PubMed: 25560097]
- 16. World Health Organization. International statistical classification of diseases and related health problems, tenth revision. Geneva, Switzerland: World Health Organization; 1992.
- Centers for Disease Control and Prevention. [Accessed March 1, 2016] Compressed Mortality File 1999–2014 on CDC WONDER Online data base. Available from: http://wonder.cdc.gov/ mortSQL.html
- National Center for Health Statistics. Vital statistics data available online. Hyattsville, MD: National Center for Health Statistics; Available from: http://www.cdc.gov/nchs/data_access/ VitalStatsOnline.htm [Accessed March 1, 2016]
- National Cancer Institute. Joinpoint trend analysis software, version 4.2.0.2. Bethesda, MD: National Institutes of Health; 2015. Available from: http://surveillance.cancer.gov/joinpoint/ [Accessed March 1, 2016]
- Interviews with Dr. Donna L. Hoyert, NCHS maternal mortality expert, Division of Vital Statistics, National Center for Health Statistics. November 30, 2015; April 27, 2016.
- 21. World Health Organization. Trends in maternal mortality: 1990 to 2013 Estimates by WHO, UNICEF, UNFPA, The World Bank and the United Nations Population Division. Geneva, Switzerland: World Health Organization; 2014.
- 22. Organization for Economic Cooperation and Development. [Accessed March 10, 2016] OECD health statistics. 2015. Available from: http://www.oecd.org/health/health-data.htm
- Main EK, McCain CL, Morton CH, Holtby S, Lawton ES. Pregnancy-related mortality in California: Causes, characteristics, and improvement opportunities. Obstet Gynecol. 2015; 125(4): 938–947. DOI: 10.1097/AOG.000000000000746 [PubMed: 25751214]
- 24. Druzin, et al. [Accessed March 11, 2016] Improving Health Care Response to Pre-Eclampsia: A California Tool Kit to Transform Maternity Care. 2013. Available from: https://www.cmqcc.org/ resources-tool-kits/toolkits/preeclampsia-toolkit
- 25. Lyndon, A.; Lagrew, D.; Shields, LE.; Main, E.; Cape, V. [Accessed March 11, 2016] Improving Health Care Response to Obstetric Hemorrhage, Version 2.0: A California Tool Kit to Improve Maternity Care. 2015. Available from: https://www.cmqcc.org/resources-tool-kits/toolkits/ obhemorrhage-toolkit
- 26. Stevenson AJ, Flores-Vasquez IM, Allgeyer RL, Schenkkan P, Potter JE. Effect of removal of Planned Parenthood from the Texas Women's Health Program. NEJM. 2016; 374(9):853–60. [PubMed: 26836435]
- 27. Liptak, Adam. Supreme Court Appears Sharply Divided as It Hears Texas Abortion Case. New York Times; Mar 2. 2016 Available from: http://www.nytimes.com/2016/03/03/us/politics/ supreme-court-abortion-texas.html
- MacKay AP, Berg CJ, Liu X, Duran C, Hoyert DL. Changes in pregnancy mortality ascertainment United States 1999–2005. Obstet Gynecol. 2011; 118(1):104–110. [PubMed: 21691169]
- Malloy MH, MacDorman MF. Changes in the classification of sudden unexpected infant deaths: United States 1992–2001. Pediatrics. 2005; 115:1247–53. [PubMed: 15867031]

Figure 1.

Adjusted Maternal Mortality Rates, Analysis Group 1, 2000–2014.

Note: Includes 24 states and Washington D.C. that did not have a pregnancy question on their unrevised death certificate and that adopted the U.S. standard question upon revision: Arkansas, Arizona, Connecticut, Delaware, Georgia, Idaho, Kansas, Maine, Michigan, Montana, New Hampshire, Nevada, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Utah, Vermont, Washington, and Wyoming.

Figure 2.

Adjusted Maternal Mortality Rates, Analysis Group 2, 2000–2014. Note: Includes 13 states that had a pregnancy question asking about a longer timeframe on their unrevised death certificate and that adopted the U.S. standard question upon revision: Florida, Illinois, Indiana, Idaho, Kentucky, Louisiana, Mississippi, Minnesota, Missouri, Nebraska, New Jersey, New York, and North Dakota.

MacDorman et al.

Figure 3.

Unadjusted Maternal Mortality Rates, Analysis Groups 3 and 4, 2000–2014. Note: Group 3 includes 8 states that did not have a pregnancy question on their unrevised death certificate (Alaska, Colorado, Hawaii, North Carolina, Massachusetts, West Virginia, and Wisconsin) or that had a pregnancy question with a longer timeframe (Virginia) and had not revised as of late 2013 (Wisconsin revised in late 2013 and their data were excluded from the 2013 data point). Group 4 includes 3 states (Alabama, Maryland, and New Mexico) that had an unrevised pregnancy question consistent with the U.S. standard.

Figure 4.

Adjusted Maternal Mortality Rates, Texas, 2000–2014

Note: Texas revised to the U.S. standard pregnancy question in 2006. The unrevised question asked about pregnancies within the past 12 months.

Figure 5.

Unadjusted Combined Maternal and Late Maternal Mortality Rates, California, 2000–2014. Note: Includes pregnancy-related deaths occurring within 1 year of pregnancy. California revised their death certificate in 2003 to a non-standard question that asks about deaths within 1 year of pregnancy. Prior to 2003, California did not have a pregnancy question on their death certificate.

Table 1

State Death Certificate Revision Dates and Pregnancy Question Types, 2014

State	Unrevised			
	Pregnancy question?	Pregnant within last:	Revision date*	Analysis group**
Alabama	Yes	42 days	not revised	4
Alaska	No		2014	3
Arizona	No		2010	1
Arkansas	No		2008	1
California	No		2003	separate
Colorado	No		not revised	3
Connecticut	No		2005	1
Delaware	No		2007	1
Florida	Yes	3 months	2005	2
Georgia	No		2008	1
Hawaii	No		2014	3
Idaho	No		2003	1
Illinois	Yes	3 months	2008	2
Indiana	Yes	90 days	2008	2
Iowa	Yes	12 months	2011	2
Kansas	No		2005	1
Kentucky	Yes	12 months	July 2010	2
Louisiana	Yes	12 months	July 2012	2
Maine	No		Rolling 2010	1
Maryland	Yes	42 days	not revised	4
Massachusetts	No		Sept. 2014	3
Michigan	No		2004	1
Minnesota	Yes	12 months	March 2011	2
Mississippi	Yes	90 days	2012	2
Missouri	Yes	90 days	2010	2
Montana	No		2003	1
Nebraska	Yes	3 months	2005	2
Nevada	No		2008	1
New Hampshire	No		April 2004	1
New Jersey	Yes	90 days	2004	2
New Mexico	Yes	6 weeks	2006	4
New York City	Yes	12 months	2003	2
New York State	Yes	6 months	2003	2
North Carolina	No		2014	3
North Dakota	Yes	18 months	2008	2
Ohio	No		2007	1
Oklahoma	No		2004	1
Oregon	No		2006	1

	Unre	evised		
State	Pregnancy question?	Pregnant within last:	Revision date [*] A	Analysis group**
Pennsylvania	No		2012	1
Rhode Island	No		2006	1
South Carolina	No		2005	1
South Dakota	No		2004	1
Tennessee	No		2012	1
Texas	Yes	12 months	2006	**1
Utah	No		2005	1
Vermont	No		July 2008	1
Virginia	Yes	3 months	Oct. 2014	3
Washington	No		2004	1
Washington D.C.	No		Mid-2005	1
West Virginia	No		not revised	3
Wisconsin	No		Sept. 2013	3
Wyoming	No		2004	1

* Revision dates are of January 1 of the stated year, unless otherwise specified. States listed as not revised are those that were not revised as of December 2014.

** Analysis group 1 includes states that did not have an unrevised pregnancy question and adopted the U. S. standard question by January 2013. Group 2 includes states that had an unrevised pregnancy question with a timeframe longer than the U.S. standard. Group 3 includes states that had not revised by late 2013 with either no pregnancy question or a non-standard pregnancy question on their unrevised death certificate. Group 4 includes states who had an unrevised pregnancy question consistent with the U.S. standard.

*** Group 2 for correction factor.; separate for trend analysis Note: All states adopted the U.S. standard question when revised except for California which adopted a question on pregnancy within the past 1 year.

Table 2

Estimated Maternal Mortality Rates, 48 states and D.C., 2000-2014

Year	Maternal mortality rate
2000	18.8
2001	19.2
2002	19.5
2003	19.9
2004	20.3
2005	20.6
2006	21.0
2007	21.3
2008	21.7
2009	22.0
2010	22.4
2011	22.8
2012	23.1
2013	23.5
2014	23.8

Excludes California and Texas.

Note: Rates back-estimated from reported 2014 rate for states with the standard pregnancy question, using a weighted average of the slopes from Groups 1–4; see Methods section.